gpu_info.cc 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
16

W
Wilber 已提交
17
#include <array>
18 19
#include <cstdlib>
#include <mutex>
F
From00 已提交
20
#include <set>
21
#include <vector>
22

23
#include "gflags/gflags.h"
24
#include "paddle/fluid/memory/memory.h"
25
#include "paddle/fluid/platform/cuda_device_guard.h"
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/fluid/platform/flags.h"
28 29 30 31 32 33 34
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/phi/backends/gpu/gpu_info.h"

35 36 37 38 39 40
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
41

42 43 44 45 46
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
W
Wilber 已提交
47

48 49 50 51 52 53
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

54 55 56
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log, false,
                            "Whether to print the message of gpu memory usage "
                            "at exit, mainly used for UT and CI.");
57 58 59
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log_mb, true,
                            "Whether to print the message of gpu memory usage "
                            "MB as a unit of measurement.");
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
  RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total,
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
104 105 106
      (flag_mb > 0ul
           ? flag_mb << 20
           : available_to_alloc * FLAGS_fraction_of_gpu_memory_to_use);
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
150 151 152 153

    if (FLAGS_enable_gpu_memory_usage_log) {
      // A fake UPDATE to trigger the construction of memory stat instances,
      // make sure that they are destructed after RecordedGpuMallocHelper.
154 155
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id, 0);
      DEVICE_MEMORY_STAT_UPDATE(Allocated, dev_id, 0);
156
    }
157 158 159 160 161
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
162 163
  ~RecordedGpuMallocHelper() {
    if (FLAGS_enable_gpu_memory_usage_log) {
164 165
      if (FLAGS_enable_gpu_memory_usage_log_mb) {
        std::cout << "[Memory Usage (MB)] gpu " << dev_id_ << " : Reserved = "
166 167
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_) /
                         1048576.0
168
                  << ", Allocated = "
169 170
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_) /
                         1048576.0
171 172 173
                  << std::endl;
      } else {
        std::cout << "[Memory Usage (Byte)] gpu " << dev_id_ << " : Reserved = "
174
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_)
175
                  << ", Allocated = "
176 177
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_)
                  << std::endl;
178
      }
179 180 181
    }
  }

182
  static RecordedGpuMallocHelper *Instance(int dev_id) {
183 184
    static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
210 211
  gpuError_t Malloc(void **ptr, size_t size,
                    bool malloc_managed_memory = false) {
212 213 214 215 216 217
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
218
    gpuError_t result;
219
#ifdef PADDLE_WITH_HIP
220 221 222 223 224
    if (UNLIKELY(malloc_managed_memory)) {
      result = hipMallocManaged(ptr, size);
    } else {
      result = hipMalloc(ptr, size);
    }
225 226
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
227 228 229 230
    if (UNLIKELY(malloc_managed_memory)) {
      result = cudaMallocManaged(ptr, size);
    } else {
      result = cudaMalloc(ptr, size);
231 232
      VLOG(10) << "[cudaMalloc] size=" << static_cast<double>(size) / (1 << 20)
               << " MB, result=" << result;
233
    }
234 235 236 237
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
238
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, size);
F
From00 已提交
239 240 241 242 243

#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
270 271
    VLOG(10) << "[cudaFree] size=" << static_cast<double>(size) / (1 << 20)
             << " MB";
272 273 274 275 276
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
277
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, -size);
278 279 280 281 282
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
283 284 285 286 287 288
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
289
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
290 291 292 293 294
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
295 296 297 298 299
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
300
#endif
F
From00 已提交
301
  }
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
  CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
F
From00 已提交
368 369 370

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
371 372 373

std::once_flag RecordedGpuMallocHelper::once_flag_;

374 375 376 377
gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id,
                             bool malloc_managed_memory) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(
      ptr, size, malloc_managed_memory);
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                              const CUmemAllocationProp *prop,
                              unsigned long long flags, int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size,
                                                              prop, flags);
}

CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size,
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                           size_t *actual_total, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

410 411 412 413
uint64_t RecordedGpuLimitSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize();
}

414 415 416 417 418 419 420 421 422 423 424
bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

425
bool IsGPUManagedMemorySupported(int dev_id) {
426
  return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id);
427 428 429
}

bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) {
430
  return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported(
431 432 433
      dev_id);
}

F
From00 已提交
434 435 436 437
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

438
int DnnVersion() { return phi::backends::gpu::DnnVersion(); }
W
Wilber 已提交
439

440
int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); }
W
Wilber 已提交
441 442

int GetGPUComputeCapability(int id) {
443
  return phi::backends::gpu::GetGPUComputeCapability(id);
W
Wilber 已提交
444 445 446
}

int GetGPURuntimeVersion(int id) {
447
  return phi::backends::gpu::GetGPURuntimeVersion(id);
W
Wilber 已提交
448 449 450
}

int GetGPUDriverVersion(int id) {
451
  return phi::backends::gpu::GetGPUDriverVersion(id);
W
Wilber 已提交
452 453
}

454
bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); }
W
Wilber 已提交
455 456

int GetGPUMultiProcessors(int id) {
457
  return phi::backends::gpu::GetGPUMultiProcessors(id);
W
Wilber 已提交
458 459 460
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
461
  return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
W
Wilber 已提交
462 463 464
}

int GetGPUMaxThreadsPerBlock(int id) {
465
  return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id);
W
Wilber 已提交
466 467
}

468
int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); }
W
Wilber 已提交
469 470

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
471
  return phi::backends::gpu::GetGpuMaxGridDimSize(id);
W
Wilber 已提交
472 473 474
}

std::vector<int> GetSelectedDevices() {
475
  return phi::backends::gpu::GetSelectedDevices();
W
Wilber 已提交
476 477 478
}

const gpuDeviceProp &GetDeviceProperties(int id) {
479
  return phi::backends::gpu::GetDeviceProperties(id);
W
Wilber 已提交
480 481
}

482
void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); }
W
Wilber 已提交
483

484
gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); }
W
Wilber 已提交
485 486

void GpuStreamSync(gpuStream_t stream) {
487
  phi::backends::gpu::GpuStreamSync(stream);
W
Wilber 已提交
488 489 490
}

void GpuDestroyStream(gpuStream_t stream) {
491
  phi::backends::gpu::GpuDestroyStream(stream);
W
Wilber 已提交
492 493
}

494
void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); }
W
Wilber 已提交
495 496 497

void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    gpuMemcpyKind kind, gpuStream_t stream) {
498
  phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
W
Wilber 已提交
499 500 501 502
}

void GpuMemcpySync(void *dst, const void *src, size_t count,
                   gpuMemcpyKind kind) {
503
  phi::backends::gpu::GpuMemcpySync(dst, src, count, kind);
W
Wilber 已提交
504 505 506 507
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, gpuStream_t stream) {
508 509
  phi::backends::gpu::GpuMemcpyPeerAsync(dst, dst_device, src, src_device,
                                         count, stream);
W
Wilber 已提交
510 511 512 513
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
514 515
  phi::backends::gpu::GpuMemcpyPeerSync(dst, dst_device, src, src_device,
                                        count);
W
Wilber 已提交
516 517 518
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
519
  phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
W
Wilber 已提交
520 521
}

522 523
}  // namespace platform
}  // namespace paddle