gpu_info.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
16

W
Wilber 已提交
17
#include <array>
18 19
#include <cstdlib>
#include <mutex>
F
From00 已提交
20
#include <set>
21 22
#include <vector>
#include "gflags/gflags.h"
23
#include "paddle/fluid/memory/memory.h"
24
#include "paddle/fluid/platform/cuda_device_guard.h"
25
#include "paddle/fluid/platform/enforce.h"
26
#include "paddle/fluid/platform/flags.h"
27 28 29 30 31 32 33
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/phi/backends/gpu/gpu_info.h"

34 35 36 37 38 39
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
40

41 42 43 44 45
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
W
Wilber 已提交
46

47 48 49 50 51 52
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

53 54 55 56 57 58
#ifdef PADDLE_WITH_TESTING
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log, false,
                            "Whether to print the message of gpu memory usage "
                            "at exit, mainly used for UT and CI.");
#endif

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
  RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total,
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
147 148 149 150 151 152 153 154

#ifdef PADDLE_WITH_TESTING
    if (FLAGS_enable_gpu_memory_usage_log) {
      // A fake UPDATE to trigger the construction of memory stat instances,
      // make sure that they are destructed after RecordedGpuMallocHelper.
      MEMORY_STAT_UPDATE(Reserved, dev_id, 0);
    }
#endif
155 156 157 158 159
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
160 161 162 163 164 165 166 167 168
  ~RecordedGpuMallocHelper() {
#ifdef PADDLE_WITH_TESTING
    if (FLAGS_enable_gpu_memory_usage_log) {
      std::cout << "[Memory Usage (Byte)] gpu " << dev_id_ << " : "
                << MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_) << std::endl;
    }
#endif
  }

169
  static RecordedGpuMallocHelper *Instance(int dev_id) {
170 171
    static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
197 198
  gpuError_t Malloc(void **ptr, size_t size,
                    bool malloc_managed_memory = false) {
199 200 201 202 203 204
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
205
    gpuError_t result;
206
#ifdef PADDLE_WITH_HIP
207 208 209 210 211
    if (UNLIKELY(malloc_managed_memory)) {
      result = hipMallocManaged(ptr, size);
    } else {
      result = hipMalloc(ptr, size);
    }
212 213
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
214 215 216
    if (UNLIKELY(malloc_managed_memory)) {
      result = cudaMallocManaged(ptr, size);
    } else {
217 218
      VLOG(10) << "[cudaMalloc] size=" << static_cast<double>(size) / (1 << 20)
               << " MB";
219 220
      result = cudaMalloc(ptr, size);
    }
221 222 223 224
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
225
      MEMORY_STAT_UPDATE(Reserved, dev_id_, size);
F
From00 已提交
226 227 228 229 230

#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
257 258
    VLOG(10) << "[cudaFree] size=" << static_cast<double>(size) / (1 << 20)
             << " MB";
259 260 261 262 263
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
264
      MEMORY_STAT_UPDATE(Reserved, dev_id_, -size);
265 266 267 268 269
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
270 271 272 273 274 275
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
276
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
277 278 279 280 281
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
282 283 284 285 286
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
287
#endif
F
From00 已提交
288
  }
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
  CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
F
From00 已提交
355 356 357

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
358 359 360

std::once_flag RecordedGpuMallocHelper::once_flag_;

361 362 363 364
gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id,
                             bool malloc_managed_memory) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(
      ptr, size, malloc_managed_memory);
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                              const CUmemAllocationProp *prop,
                              unsigned long long flags, int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size,
                                                              prop, flags);
}

CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size,
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                           size_t *actual_total, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

397 398 399 400
uint64_t RecordedGpuLimitSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize();
}

401 402 403 404 405 406 407 408 409 410 411
bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

412
bool IsGPUManagedMemorySupported(int dev_id) {
413
  return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id);
414 415 416
}

bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) {
417
  return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported(
418 419 420
      dev_id);
}

F
From00 已提交
421 422 423 424
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

425
int DnnVersion() { return phi::backends::gpu::DnnVersion(); }
W
Wilber 已提交
426

427
int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); }
W
Wilber 已提交
428 429

int GetGPUComputeCapability(int id) {
430
  return phi::backends::gpu::GetGPUComputeCapability(id);
W
Wilber 已提交
431 432 433
}

int GetGPURuntimeVersion(int id) {
434
  return phi::backends::gpu::GetGPURuntimeVersion(id);
W
Wilber 已提交
435 436 437
}

int GetGPUDriverVersion(int id) {
438
  return phi::backends::gpu::GetGPUDriverVersion(id);
W
Wilber 已提交
439 440
}

441
bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); }
W
Wilber 已提交
442 443

int GetGPUMultiProcessors(int id) {
444
  return phi::backends::gpu::GetGPUMultiProcessors(id);
W
Wilber 已提交
445 446 447
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
448
  return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
W
Wilber 已提交
449 450 451
}

int GetGPUMaxThreadsPerBlock(int id) {
452
  return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id);
W
Wilber 已提交
453 454
}

455
int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); }
W
Wilber 已提交
456 457

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
458
  return phi::backends::gpu::GetGpuMaxGridDimSize(id);
W
Wilber 已提交
459 460 461
}

std::vector<int> GetSelectedDevices() {
462
  return phi::backends::gpu::GetSelectedDevices();
W
Wilber 已提交
463 464 465
}

const gpuDeviceProp &GetDeviceProperties(int id) {
466
  return phi::backends::gpu::GetDeviceProperties(id);
W
Wilber 已提交
467 468
}

469
void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); }
W
Wilber 已提交
470

471
gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); }
W
Wilber 已提交
472 473

void GpuStreamSync(gpuStream_t stream) {
474
  phi::backends::gpu::GpuStreamSync(stream);
W
Wilber 已提交
475 476 477
}

void GpuDestroyStream(gpuStream_t stream) {
478
  phi::backends::gpu::GpuDestroyStream(stream);
W
Wilber 已提交
479 480
}

481
void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); }
W
Wilber 已提交
482 483 484

void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    gpuMemcpyKind kind, gpuStream_t stream) {
485
  phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
W
Wilber 已提交
486 487 488 489
}

void GpuMemcpySync(void *dst, const void *src, size_t count,
                   gpuMemcpyKind kind) {
490
  phi::backends::gpu::GpuMemcpySync(dst, src, count, kind);
W
Wilber 已提交
491 492 493 494
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, gpuStream_t stream) {
495 496
  phi::backends::gpu::GpuMemcpyPeerAsync(dst, dst_device, src, src_device,
                                         count, stream);
W
Wilber 已提交
497 498 499 500
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
501 502
  phi::backends::gpu::GpuMemcpyPeerSync(dst, dst_device, src, src_device,
                                        count);
W
Wilber 已提交
503 504 505
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
506
  phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
W
Wilber 已提交
507 508
}

509 510
}  // namespace platform
}  // namespace paddle