gpu_info.cc 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
16

W
Wilber 已提交
17
#include <array>
18 19
#include <cstdlib>
#include <mutex>
F
From00 已提交
20
#include <set>
21 22
#include <vector>
#include "gflags/gflags.h"
23
#include "paddle/fluid/memory/memory.h"
24
#include "paddle/fluid/platform/cuda_device_guard.h"
25 26 27 28 29 30 31 32
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"
#include "paddle/phi/backends/gpu/gpu_info.h"

33 34 35 36 37 38
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
39

40 41 42 43 44
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
W
Wilber 已提交
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
  RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total,
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
  static RecordedGpuMallocHelper *Instance(int dev_id) {
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
171 172
  gpuError_t Malloc(void **ptr, size_t size,
                    bool malloc_managed_memory = false) {
173 174 175 176 177 178
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
179
    gpuError_t result;
180
#ifdef PADDLE_WITH_HIP
181 182 183 184 185
    if (UNLIKELY(malloc_managed_memory)) {
      result = hipMallocManaged(ptr, size);
    } else {
      result = hipMalloc(ptr, size);
    }
186 187
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
188 189 190 191 192
    if (UNLIKELY(malloc_managed_memory)) {
      result = cudaMallocManaged(ptr, size);
    } else {
      result = cudaMalloc(ptr, size);
    }
193 194 195 196
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
197
      MEMORY_STAT_UPDATE(Reserved, dev_id_, size);
F
From00 已提交
198 199 200 201 202

#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
234
      MEMORY_STAT_UPDATE(Reserved, dev_id_, -size);
235 236 237 238 239
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
240 241 242 243 244 245
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
246
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
247 248 249 250 251
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
252 253 254 255 256
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
257
#endif
F
From00 已提交
258
  }
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
  CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
  static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;
F
From00 已提交
326 327 328

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
329 330 331 332 333

std::once_flag RecordedGpuMallocHelper::once_flag_;
std::vector<std::unique_ptr<RecordedGpuMallocHelper>>
    RecordedGpuMallocHelper::instances_;

334 335 336 337
gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id,
                             bool malloc_managed_memory) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(
      ptr, size, malloc_managed_memory);
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                              const CUmemAllocationProp *prop,
                              unsigned long long flags, int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size,
                                                              prop, flags);
}

CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size,
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                           size_t *actual_total, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

370 371 372 373
uint64_t RecordedGpuLimitSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize();
}

374 375 376 377 378 379 380 381 382 383 384
bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

385
bool IsGPUManagedMemorySupported(int dev_id) {
386
  return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id);
387 388 389
}

bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) {
390
  return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported(
391 392 393
      dev_id);
}

F
From00 已提交
394 395 396 397
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

398
int DnnVersion() { return phi::backends::gpu::DnnVersion(); }
W
Wilber 已提交
399

400
int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); }
W
Wilber 已提交
401 402

int GetGPUComputeCapability(int id) {
403
  return phi::backends::gpu::GetGPUComputeCapability(id);
W
Wilber 已提交
404 405 406
}

int GetGPURuntimeVersion(int id) {
407
  return phi::backends::gpu::GetGPURuntimeVersion(id);
W
Wilber 已提交
408 409 410
}

int GetGPUDriverVersion(int id) {
411
  return phi::backends::gpu::GetGPUDriverVersion(id);
W
Wilber 已提交
412 413
}

414
bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); }
W
Wilber 已提交
415 416

int GetGPUMultiProcessors(int id) {
417
  return phi::backends::gpu::GetGPUMultiProcessors(id);
W
Wilber 已提交
418 419 420
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
421
  return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
W
Wilber 已提交
422 423 424
}

int GetGPUMaxThreadsPerBlock(int id) {
425
  return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id);
W
Wilber 已提交
426 427
}

428
int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); }
W
Wilber 已提交
429 430

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
431
  return phi::backends::gpu::GetGpuMaxGridDimSize(id);
W
Wilber 已提交
432 433 434
}

std::vector<int> GetSelectedDevices() {
435
  return phi::backends::gpu::GetSelectedDevices();
W
Wilber 已提交
436 437 438
}

const gpuDeviceProp &GetDeviceProperties(int id) {
439
  return phi::backends::gpu::GetDeviceProperties(id);
W
Wilber 已提交
440 441
}

442
void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); }
W
Wilber 已提交
443

444
gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); }
W
Wilber 已提交
445 446

void GpuStreamSync(gpuStream_t stream) {
447
  phi::backends::gpu::GpuStreamSync(stream);
W
Wilber 已提交
448 449 450
}

void GpuDestroyStream(gpuStream_t stream) {
451
  phi::backends::gpu::GpuDestroyStream(stream);
W
Wilber 已提交
452 453
}

454
void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); }
W
Wilber 已提交
455 456 457

void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    gpuMemcpyKind kind, gpuStream_t stream) {
458
  phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
W
Wilber 已提交
459 460 461 462
}

void GpuMemcpySync(void *dst, const void *src, size_t count,
                   gpuMemcpyKind kind) {
463
  phi::backends::gpu::GpuMemcpySync(dst, src, count, kind);
W
Wilber 已提交
464 465 466 467
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, gpuStream_t stream) {
468 469
  phi::backends::gpu::GpuMemcpyPeerAsync(dst, dst_device, src, src_device,
                                         count, stream);
W
Wilber 已提交
470 471 472 473
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
474 475
  phi::backends::gpu::GpuMemcpyPeerSync(dst, dst_device, src, src_device,
                                        count);
W
Wilber 已提交
476 477 478
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
479
  phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
W
Wilber 已提交
480 481
}

482 483
}  // namespace platform
}  // namespace paddle