gpu_info.cc 14.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
W
Wilber 已提交
16
#include <array>
17 18
#include <cstdlib>
#include <mutex>
F
From00 已提交
19
#include <set>
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include <vector>

#include "gflags/gflags.h"
#include "paddle/fluid/platform/cuda_device_guard.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
#include "paddle/fluid/memory/malloc.h"
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/string/split.h"

43
#include "paddle/phi/backends/gpu/gpu_info.h"
W
Wilber 已提交
44

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
  RecordedGpuMemGetInfo(available, total, &actual_available, &actual_total,
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
      available_to_alloc, 0,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
      (flag_mb > 0ul ? flag_mb << 20 : available_to_alloc *
                                           FLAGS_fraction_of_gpu_memory_to_use);
  PADDLE_ENFORCE_GE(
      available_to_alloc, alloc_bytes,
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMinChunkSize() {
  // Allow to allocate the minimum chunk size is 256 bytes.
  return 1 << 8;
}

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
  static RecordedGpuMallocHelper *Instance(int dev_id) {
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
        dev_id, 0,
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
        dev_id, instances_.size(),
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
                                     dev_id, instances_.size()));
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
170 171
  gpuError_t Malloc(void **ptr, size_t size,
                    bool malloc_managed_memory = false) {
172 173 174 175 176 177
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
178
    gpuError_t result;
179
#ifdef PADDLE_WITH_HIP
180 181 182 183 184
    if (UNLIKELY(malloc_managed_memory)) {
      result = hipMallocManaged(ptr, size);
    } else {
      result = hipMalloc(ptr, size);
    }
185 186
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
187 188 189 190 191
    if (UNLIKELY(malloc_managed_memory)) {
      result = cudaMallocManaged(ptr, size);
    } else {
      result = cudaMalloc(ptr, size);
    }
192 193 194 195
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
F
From00 已提交
196 197 198 199 200

#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
237 238 239 240 241 242
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
243
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
244 245 246 247 248
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
249 250 251 252 253
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
254
#endif
F
From00 已提交
255
  }
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

  bool GetMemInfo(size_t *avail, size_t *total, size_t *actual_avail,
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
  CUresult MemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
  static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;
F
From00 已提交
323 324 325

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
326 327 328 329 330

std::once_flag RecordedGpuMallocHelper::once_flag_;
std::vector<std::unique_ptr<RecordedGpuMallocHelper>>
    RecordedGpuMallocHelper::instances_;

331 332 333 334
gpuError_t RecordedGpuMalloc(void **ptr, size_t size, int dev_id,
                             bool malloc_managed_memory) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(
      ptr, size, malloc_managed_memory);
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle, size_t size,
                              const CUmemAllocationProp *prop,
                              unsigned long long flags, int dev_id) {  // NOLINT
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(handle, size,
                                                              prop, flags);
}

CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle, size_t size,
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

bool RecordedGpuMemGetInfo(size_t *avail, size_t *total, size_t *actual_avail,
                           size_t *actual_total, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

367 368 369 370
uint64_t RecordedGpuLimitSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize();
}

371 372 373 374 375 376 377 378 379 380 381
bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

382
bool IsGPUManagedMemorySupported(int dev_id) {
383
  return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id);
384 385 386
}

bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) {
387
  return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported(
388 389 390
      dev_id);
}

F
From00 已提交
391 392 393 394
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

395
int DnnVersion() { return phi::backends::gpu::DnnVersion(); }
W
Wilber 已提交
396

397
int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); }
W
Wilber 已提交
398 399

int GetGPUComputeCapability(int id) {
400
  return phi::backends::gpu::GetGPUComputeCapability(id);
W
Wilber 已提交
401 402 403
}

int GetGPURuntimeVersion(int id) {
404
  return phi::backends::gpu::GetGPURuntimeVersion(id);
W
Wilber 已提交
405 406 407
}

int GetGPUDriverVersion(int id) {
408
  return phi::backends::gpu::GetGPUDriverVersion(id);
W
Wilber 已提交
409 410
}

411
bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); }
W
Wilber 已提交
412 413

int GetGPUMultiProcessors(int id) {
414
  return phi::backends::gpu::GetGPUMultiProcessors(id);
W
Wilber 已提交
415 416 417
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
418
  return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
W
Wilber 已提交
419 420 421
}

int GetGPUMaxThreadsPerBlock(int id) {
422
  return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id);
W
Wilber 已提交
423 424
}

425
int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); }
W
Wilber 已提交
426 427

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
428
  return phi::backends::gpu::GetGpuMaxGridDimSize(id);
W
Wilber 已提交
429 430 431
}

std::vector<int> GetSelectedDevices() {
432
  return phi::backends::gpu::GetSelectedDevices();
W
Wilber 已提交
433 434 435
}

const gpuDeviceProp &GetDeviceProperties(int id) {
436
  return phi::backends::gpu::GetDeviceProperties(id);
W
Wilber 已提交
437 438
}

439
void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); }
W
Wilber 已提交
440

441
gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); }
W
Wilber 已提交
442 443

void GpuStreamSync(gpuStream_t stream) {
444
  phi::backends::gpu::GpuStreamSync(stream);
W
Wilber 已提交
445 446 447
}

void GpuDestroyStream(gpuStream_t stream) {
448
  phi::backends::gpu::GpuDestroyStream(stream);
W
Wilber 已提交
449 450
}

451
void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); }
W
Wilber 已提交
452 453 454

void GpuMemcpyAsync(void *dst, const void *src, size_t count,
                    gpuMemcpyKind kind, gpuStream_t stream) {
455
  phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
W
Wilber 已提交
456 457 458 459
}

void GpuMemcpySync(void *dst, const void *src, size_t count,
                   gpuMemcpyKind kind) {
460
  phi::backends::gpu::GpuMemcpySync(dst, src, count, kind);
W
Wilber 已提交
461 462 463 464
}

void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src,
                        int src_device, size_t count, gpuStream_t stream) {
465 466
  phi::backends::gpu::GpuMemcpyPeerAsync(dst, dst_device, src, src_device,
                                         count, stream);
W
Wilber 已提交
467 468 469 470
}

void GpuMemcpyPeerSync(void *dst, int dst_device, const void *src,
                       int src_device, size_t count) {
471 472
  phi::backends::gpu::GpuMemcpyPeerSync(dst, dst_device, src, src_device,
                                        count);
W
Wilber 已提交
473 474 475
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
476
  phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
W
Wilber 已提交
477 478
}

479 480
}  // namespace platform
}  // namespace paddle