dense_tensor.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18
#include "glog/logging.h"

19 20 21 22
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
42

43
namespace phi {
44

45
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
46
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
47

48
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
49
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
50

51
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
52
                         const DenseTensorMeta& meta)
53
    : meta_(meta), holder_(holder) {}
54

55
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
56
  holder_ = other.holder_;
57 58
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
59
  inplace_version_counter_ = other.inplace_version_counter_;
60 61

#ifdef PADDLE_WITH_MKLDNN
62
  mem_desc_ = other.mem_desc_;
63 64
#endif
}
65

66 67
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
68
  holder_ = other.holder_;
69 70
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
71
  inplace_version_counter_ = other.inplace_version_counter_;
72
#ifdef PADDLE_WITH_MKLDNN
73
  mem_desc_ = other.mem_desc_;
74
#endif
75 76 77
  return *this;
}

78 79
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
80
  std::swap(holder_, other.holder_);
81
  storage_properties_ = std::move(other.storage_properties_);
82
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
83 84 85
#ifdef PADDLE_WITH_MKLDNN
  mem_desc_ = other.mem_desc_;
#endif
86 87 88
  return *this;
}

89 90 91 92 93 94 95 96
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
97
  return holder_ && holder_ == b.Holder();
98 99
}

100 101
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
102 103
                                size_t requested_size,
                                bool fake_alloc) {
104 105
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
106
      phi::errors::InvalidArgument(
107 108 109 110 111
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
112

113
  size_t bytes = numel() * SizeOf(this->dtype());
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

  if (fake_alloc) {
    bytes = 0;
  } else {
    PADDLE_ENFORCE(
        valid(),
        phi::errors::PreconditionNotMet("The meta data must be valid when "
                                        "call the mutable data function."));
    if (requested_size) {
      PADDLE_ENFORCE_GE(requested_size,
                        bytes,
                        phi::errors::InvalidArgument(
                            "The reserved size %d should be enough to meet the "
                            "volume required by metadata %d.",
                            requested_size,
                            bytes));
      bytes = requested_size;
    }
132
  }
133

134 135 136
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
137 138 139
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
140 141 142 143 144 145 146 147 148 149
    auto holder = allocator->Allocate(bytes);
    if (holder_) {
      PADDLE_ENFORCE_LE(
          numel() * static_cast<int64_t>(SizeOf(dtype)) +
              static_cast<int64_t>(meta_.offset),
          static_cast<int64_t>(holder->size()),
          phi::errors::InvalidArgument(
              "The size of Holder is not enough to store the Tensor."));
    }
    holder_ = std::move(holder);
150 151 152 153 154 155
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

156 157
template <typename T>
const T* DenseTensor::data() const {
H
hong 已提交
158 159
  PADDLE_ENFORCE_EQ(
      dtype(),
160
      phi::CppTypeToDataType<T>::Type(),
161
      phi::errors::InvalidArgument(
162 163
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
164
          phi::CppTypeToDataType<T>::Type(),
165
          dtype()));
166 167 168
  return static_cast<const T*>(data());
}

169 170
template <typename T>
T* DenseTensor::data() {
171
  T* ret = static_cast<T*>(data());
172
  PADDLE_ENFORCE(
173
      (dtype() == phi::CppTypeToDataType<T>::Type()),
174
      phi::errors::InvalidArgument(
175 176
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
177
          phi::CppTypeToDataType<T>::Type(),
178
          dtype()));
179
  return ret;
180 181
}

182
void* DenseTensor::data() {
183
  check_memory_size();
184
  PADDLE_ENFORCE_NOT_NULL(
185
      holder_,
186
      phi::errors::PreconditionNotMet(
187 188
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
189
                                 meta_.offset);
190 191
}

192
const void* DenseTensor::data() const {
193
  check_memory_size();
194
  PADDLE_ENFORCE_NOT_NULL(
195
      holder_,
196
      phi::errors::PreconditionNotMet(
197
          "The storage must be valid when call the data function."));
198
  return reinterpret_cast<const void*>(
199
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
200 201
}

202 203
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
204
                 phi::errors::InvalidArgument(
205 206 207
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
208 209
}

210 211 212
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
213
      phi::errors::InvalidArgument(
214 215 216 217 218 219 220
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
221
  meta_.use_gpudnn = meta.use_gpudnn;
222 223
}

224
/* @jim19930609: This interface will be further modified until we finalized the
225 226 227 228 229 230 231 232 233
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
234
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
235
  meta_.dims = dims;
236 237
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
238
  }
石晓伟 已提交
239 240
}

241 242
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

243 244 245
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
246 247 248 249 250 251 252 253 254 255

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
256 257
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
258 259
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
260 261
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
262 263 264

#undef DATA_MEMBER_FUNC_INSTANTIATION

265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
template <typename DeviceT>
const DeviceT& DenseTensor::storage_properties() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_properties_,
      phi::errors::PreconditionNotMet(
          "The storage_properties of current DenseTensor is nullptr."));
  if (DeviceT::classof(storage_properties_.get())) {
    return static_cast<DeviceT&>(*storage_properties_);
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The actual type of storage_properties is inconsistent with the type "
        "of the template parameter passed in."));
  }
}

template const NPUStorageProperties& DenseTensor::storage_properties() const;
#ifdef PADDLE_WITH_MKLDNN
template const OneDNNStorageProperties& DenseTensor::storage_properties() const;
#endif

285 286 287 288
bool DenseTensor::storage_properties_initialized() const {
  return storage_properties_ != nullptr;
}

289 290 291 292 293
void DenseTensor::set_storage_properties(
    std::unique_ptr<StorageProperties>&& storage_properties) {
  storage_properties_ = std::move(storage_properties);
}

294
}  // namespace phi