Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
30470853
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
30470853
编写于
1月 26, 2022
作者:
石
石晓伟
提交者:
GitHub
1月 26, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Refactoring Tensor PR #7] differentiate deprecated interfaces (#39228)
上级
01d04be6
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
600 addition
and
642 deletion
+600
-642
paddle/fluid/framework/variable.h
paddle/fluid/framework/variable.h
+3
-3
paddle/pten/core/CMakeLists.txt
paddle/pten/core/CMakeLists.txt
+1
-1
paddle/pten/core/dense_tensor.cc
paddle/pten/core/dense_tensor.cc
+1
-380
paddle/pten/core/dense_tensor.h
paddle/pten/core/dense_tensor.h
+4
-196
paddle/pten/core/dense_tensor.inl
paddle/pten/core/dense_tensor.inl
+197
-0
paddle/pten/core/dense_tensor_impl.cc
paddle/pten/core/dense_tensor_impl.cc
+394
-0
paddle/pten/core/tensor_status.h
paddle/pten/core/tensor_status.h
+0
-62
未找到文件。
paddle/fluid/framework/variable.h
浏览文件 @
30470853
...
...
@@ -72,7 +72,7 @@ class Variable {
private:
// This method hides type T, so it doesn't appear as a template parameter of
// Variable.
pten
::
Tensor
InplaceVersion
*
InplaceVersionCounter
();
pten
::
DenseTensor
::
InplaceVersion
*
InplaceVersionCounter
();
public:
void
SetInplaceVersionToZero
();
...
...
@@ -114,8 +114,8 @@ class Variable {
std
::
shared_ptr
<
Placeholder
>
holder_
;
};
inline
pten
::
Tensor
InplaceVersion
*
Variable
::
InplaceVersionCounter
()
{
pten
::
Tensor
InplaceVersion
*
version_counter_ptr
(
nullptr
);
inline
pten
::
DenseTensor
::
InplaceVersion
*
Variable
::
InplaceVersionCounter
()
{
pten
::
DenseTensor
::
InplaceVersion
*
version_counter_ptr
(
nullptr
);
if
(
IsType
<
framework
::
LoDTensor
>
())
{
version_counter_ptr
=
&
GetMutable
<
framework
::
LoDTensor
>
()
->
InplaceVersionCounter
();
...
...
paddle/pten/core/CMakeLists.txt
浏览文件 @
30470853
...
...
@@ -19,7 +19,7 @@ cc_library(kernel_context SRCS kernel_context.cc DEPS pten_enforce pten_context)
cc_library
(
tensor_base SRCS tensor_base.cc allocator.cc storage.cc DEPS pten_enforce
)
cc_library
(
tensor_meta SRCS tensor_meta.cc DEPS pten_enforce mixed_vector
)
cc_library
(
lod_utils SRCS lod_utils.cc DEPS pten_enforce mixed_vector
)
cc_library
(
dense_tensor SRCS dense_tensor.cc DEPS convert_utils tensor_meta tensor_base
)
cc_library
(
dense_tensor SRCS dense_tensor.cc
dense_tensor_impl.cc
DEPS convert_utils tensor_meta tensor_base
)
cc_library
(
pten_device_context SRCS device_context.cc DEPS tensor_base
)
cc_library
(
meta_tensor SRCS meta_tensor.cc DEPS tensor_base tensor_meta dense_tensor
)
...
...
paddle/pten/core/dense_tensor.cc
浏览文件 @
30470853
/* Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -22,14 +22,6 @@ limitations under the License. */
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/convert_utils.h"
namespace
paddle
{
namespace
framework
{
extern
void
TensorCopy
(
const
pten
::
DenseTensor
&
src
,
const
paddle
::
platform
::
Place
&
dst_place
,
pten
::
DenseTensor
*
dst
);
}
}
namespace
pten
{
DenseTensor
::
DenseTensor
(
Allocator
*
a
,
const
DenseTensorMeta
&
meta
)
...
...
@@ -180,375 +172,4 @@ DATA_MEMBER_FUNC_INSTANTIATION(::paddle::experimental::complex128);
#undef DATA_MEMBER_FUNC_INSTANTIATION
/* --------------------------- */
/* From framework::Tensor */
/* --------------------------- */
DenseTensor
::
DenseTensor
()
{
inplace_version_counter_
=
std
::
make_shared
<
TensorInplaceVersion
>
(
0
);
meta_
.
dtype
=
paddle
::
experimental
::
DataType
::
FLOAT32
;
meta_
.
offset
=
0
;
}
DenseTensor
::
DenseTensor
(
paddle
::
framework
::
proto
::
VarType
::
Type
dtype
)
{
inplace_version_counter_
=
std
::
make_shared
<
TensorInplaceVersion
>
(
0
);
meta_
.
dtype
=
TransToPtenDataType
(
dtype
);
meta_
.
offset
=
0
;
}
size_t
DenseTensor
::
memory_size
()
const
{
return
holder_
==
nullptr
?
0UL
:
holder_
->
size
()
-
meta_
.
offset
;
}
void
DenseTensor
::
check_memory_size
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor holds no memory. "
"Call Tensor::mutable_data firstly."
));
PADDLE_ENFORCE_LE
(
numel
()
*
SizeOf
(
dtype
()),
memory_size
(),
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor's dimension is out of bound."
"Tensor's dimension must be equal or less than the size of its "
"memory."
"But received Tensor's dimension is d%, memory's size is %d."
,
numel
()
*
SizeOf
(
dtype
()),
memory_size
()));
}
const
paddle
::
platform
::
Place
&
DenseTensor
::
place
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor not initialized yet when DenseTensor::place() is called."
));
return
holder_
->
place
();
}
paddle
::
framework
::
proto
::
VarType
::
Type
DenseTensor
::
type
()
const
{
return
TransToProtoVarType
(
meta_
.
dtype
);
}
paddle
::
framework
::
proto
::
VarType
::
Type
DenseTensor
::
saved_type
()
const
{
return
TransToProtoVarType
(
meta_
.
dtype
);
}
void
DenseTensor
::
set_layout
(
const
paddle
::
framework
::
DataLayout
layout
)
{
meta_
.
layout
=
layout
;
}
void
DenseTensor
::
ResetHolder
(
const
std
::
shared_ptr
<
pten
::
Allocation
>&
holder
)
{
PADDLE_ENFORCE_EQ
(
meta_
.
offset
,
0
,
paddle
::
platform
::
errors
::
Fatal
(
"Only the offset is supported to zero when the holder is reset."
));
if
(
holder_
)
{
// TODO(zyfncg): The change of static_cast<> in check will recover back
// when SetAllocationForOutputTenosr is deleted.
// Now the numel() may return -1, and will cast to a very large number when
// compare with a data with unsigned long type, this will make checking
// failed, so it's a temporary solution to deal with this problem.
PADDLE_ENFORCE_LE
(
numel
()
*
static_cast
<
int64_t
>
(
SizeOf
(
dtype
())),
static_cast
<
int64_t
>
(
holder
->
size
()),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The size of Holder is not enough to store the Tensor."
));
}
holder_
=
holder
;
}
void
DenseTensor
::
ResetHolderWithType
(
const
std
::
shared_ptr
<
pten
::
Allocation
>&
holder
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
)
{
set_type
(
type
);
ResetHolder
(
holder
);
}
void
DenseTensor
::
set_type
(
paddle
::
framework
::
proto
::
VarType
::
Type
type
)
{
meta_
.
dtype
=
TransToPtenDataType
(
type
);
}
void
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
,
size_t
requested_size
)
{
set_type
(
type
);
PADDLE_ENFORCE_GE
(
numel
(),
0
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"The Tensor's element number must be equal or greater than zero. "
"The Tensor's shape is ["
,
dims
(),
"] now"
));
size_t
size
=
numel
()
*
SizeOf
(
dtype
());
if
(
requested_size
&&
(
requested_size
>
size
))
{
size
=
requested_size
;
}
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
meta_
.
offset
)
{
holder_
.
reset
();
holder_
=
paddle
::
memory
::
AllocShared
(
place
,
size
);
meta_
.
offset
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
meta_
.
offset
);
}
void
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
)
{
return
mutable_data
(
place
,
type
(),
requested_size
);
}
void
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
,
const
paddle
::
platform
::
Stream
&
stream
)
{
set_type
(
type
);
PADDLE_ENFORCE_GE
(
numel
(),
0
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"The Tensor's element number must be equal or greater than zero. "
"The Tensor's shape is ["
,
dims
(),
"] now"
));
size_t
size
=
numel
()
*
SizeOf
(
dtype
());
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
meta_
.
offset
||
!
(
paddle
::
platform
::
is_gpu_place
(
place
)
&&
paddle
::
memory
::
InSameStream
(
holder_
,
stream
)))
{
holder_
.
reset
();
holder_
=
paddle
::
memory
::
AllocShared
(
place
,
size
,
stream
);
meta_
.
offset
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
meta_
.
offset
);
}
/* @jim19930609: The following "mutable_data" only supports specific dtypes
defined in OpProto. This part need another clean up once the data type across
Fluid
and Pten get unified.
*/
template
<
typename
T
>
inline
T
*
DenseTensor
::
mutable_data
(
const
DDim
&
dims
,
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
meta_
.
dims
=
dims
;
return
mutable_data
<
T
>
(
place
,
requested_size
);
}
template
<
typename
T
>
inline
T
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
return
reinterpret_cast
<
T
*>
(
mutable_data
(
place
,
paddle
::
framework
::
DataTypeTrait
<
T
>::
DataType
(),
requested_size
));
}
void
DenseTensor
::
ShareBufferWith
(
const
DenseTensor
&
tensor
)
{
holder_
=
tensor
.
holder_
;
meta_
.
offset
=
tensor
.
meta
().
offset
;
meta_
.
dtype
=
tensor
.
dtype
();
}
#define LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(dtype) \
template dtype* DenseTensor::mutable_data( \
const DDim& dims, \
const paddle::platform::Place& place, \
size_t requested_size); \
template dtype* DenseTensor::mutable_data( \
const paddle::platform::Place& place, size_t requested_size);
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
bool
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int8_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
uint8_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int16_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int32_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int64_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
float
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
double
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
platform
::
bfloat16
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
platform
::
float16
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
experimental
::
complex64
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
experimental
::
complex128
)
#undef LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
/* ------------------------------ */
/* From framework::LoDTensor */
/* ------------------------------ */
DenseTensor
::
DenseTensor
(
intrusive_ptr
<
Storage
>
storage
,
const
DenseTensorMeta
&
meta
)
:
meta_
(
meta
),
holder_
(
storage
->
move_data_shared
())
{}
DenseTensor
::
DenseTensor
(
intrusive_ptr
<
Storage
>
storage
,
DenseTensorMeta
&&
meta
)
:
meta_
(
std
::
move
(
meta
)),
holder_
(
storage
->
move_data_shared
())
{}
DenseTensor
::
DenseTensor
(
const
LoD
&
lod
)
:
DenseTensor
()
{
meta_
.
lod
=
lod
;
}
void
DenseTensor
::
set_lod
(
const
LoD
&
lod
)
{
meta_
.
lod
=
lod
;
}
LoD
*
DenseTensor
::
mutable_lod
()
{
return
&
meta_
.
lod
;
}
std
::
pair
<
size_t
,
size_t
>
DenseTensor
::
lod_element
(
size_t
level
,
size_t
elem
)
const
{
PADDLE_ENFORCE_LT
(
level
,
NumLevels
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The input level of LoD is invalid, it should be less than LoD "
"size. The input level is %zu, the LoD size is %zu."
,
level
,
NumLevels
()));
PADDLE_ENFORCE_LT
(
elem
,
NumElements
(
level
),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The input element of LoD is invalid, it should be "
"less than the number of elements in its level."
"The input element is %zu, the number of elements in "
"its level is %zu."
,
elem
,
NumElements
(
level
)));
return
std
::
make_pair
((
meta_
.
lod
)[
level
][
elem
],
(
meta_
.
lod
)[
level
][
elem
+
1
]);
}
size_t
DenseTensor
::
NumLevels
()
const
{
return
meta_
.
lod
.
size
();
}
size_t
DenseTensor
::
NumElements
(
size_t
level
)
const
{
PADDLE_ENFORCE_LT
(
level
,
NumLevels
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The input level of LoD is invalid, it should be less than LoD "
"size. The input level is %zu, the LoD size is %zu."
,
level
,
NumLevels
()));
// the last offset is the end of last element
return
(
meta_
.
lod
)[
level
].
size
()
-
1
;
}
DenseTensor
&
DenseTensor
::
Resize
(
const
DDim
&
dims
)
{
meta_
.
dims
=
dims
;
return
*
this
;
}
DenseTensor
DenseTensor
::
Slice
(
int64_t
begin_idx
,
int64_t
end_idx
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"The start row index must be greater than 0."
"But received the start index is d%."
,
begin_idx
));
PADDLE_ENFORCE_LE
(
end_idx
,
meta_
.
dims
[
0
],
paddle
::
platform
::
errors
::
OutOfRange
(
"The end row index is out of bound."
));
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"The start row index must be less than the end row index."
"But received the start index = %d, the end index = %d."
,
begin_idx
,
end_idx
));
if
(
meta_
.
dims
[
0
]
==
1
)
{
return
*
this
;
}
else
{
size_t
base
=
numel
()
/
meta_
.
dims
[
0
];
DenseTensor
dst
;
dst
.
holder_
=
holder_
;
dst
.
set_layout
(
meta_
.
layout
);
dst
.
meta_
.
dtype
=
meta_
.
dtype
;
DDim
dst_dims
=
meta_
.
dims
;
dst_dims
[
0
]
=
end_idx
-
begin_idx
;
dst
.
Resize
(
dst_dims
);
dst
.
meta_
.
offset
=
meta_
.
offset
+
begin_idx
*
base
*
SizeOf
(
dtype
());
return
dst
;
}
}
std
::
vector
<
DenseTensor
>
DenseTensor
::
Split
(
int64_t
split_size
,
int64_t
axis
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
meta_
.
dims
.
size
(),
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"split expects at least a 1-dimensional tensor"
));
PADDLE_ENFORCE_GE
(
split_size
,
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"split expects split_size be non-negative, but got split_size is %d"
,
split_size
));
int64_t
numel_size
=
meta_
.
dims
[
axis
];
int64_t
num_splits
=
1
;
if
(
split_size
!=
0
)
{
num_splits
=
std
::
max
<
int64_t
>
((
numel_size
+
split_size
-
1
)
/
split_size
,
1
);
}
std
::
vector
<
DenseTensor
>
splits
(
num_splits
);
int64_t
last_split_size
=
split_size
-
(
split_size
*
num_splits
-
numel_size
);
for
(
int64_t
i
=
0
;
i
<
num_splits
;
++
i
)
{
int64_t
length
=
i
<
num_splits
-
1
?
split_size
:
last_split_size
;
splits
[
i
]
=
Slice
(
i
*
split_size
,
i
*
split_size
+
length
);
}
return
splits
;
}
std
::
vector
<
DenseTensor
>
DenseTensor
::
Chunk
(
int64_t
chunks
,
int64_t
axis
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
meta_
.
dims
.
size
(),
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"split expects at least a 1-dimensional tensor"
));
PADDLE_ENFORCE_GE
(
chunks
,
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"chunks expects to be greater than 0, but got chunks is %d"
,
chunks
));
int64_t
numel_size
=
meta_
.
dims
[
axis
];
int64_t
split_size
=
(
numel_size
+
chunks
-
1
)
/
chunks
;
return
Split
(
split_size
,
axis
);
}
DenseTensor
&
DenseTensor
::
ShareDataWith
(
const
DenseTensor
&
src
)
{
src
.
check_memory_size
();
// Preserve LoD
auto
lod
=
meta_
.
lod
;
*
this
=
src
;
meta_
.
lod
=
lod
;
return
*
this
;
}
DenseTensor
&
DenseTensor
::
ShareInplaceVersionCounterWith
(
const
DenseTensor
&
src
)
{
PADDLE_ENFORCE_NOT_NULL
(
inplace_version_counter_
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor does not hold inplace_version_counter_."
));
inplace_version_counter_
=
src
.
inplace_version_counter_
;
return
*
this
;
}
}
// namespace pten
paddle/pten/core/dense_tensor.h
浏览文件 @
30470853
/* Copyright (c) 202
1
PaddlePaddle Authors. All Rights Reserved.
/* Copyright (c) 202
2
PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
...
...
@@ -33,25 +33,6 @@ namespace pten {
class
CompatibleDenseTensorUtils
;
/* --------------------------- */
/* From framework::Tensor */
/* --------------------------- */
/* Temporarily put TensorInplaceVersion inside DenseTensor.
Will move to AutogradMeta as soon as we switch to Eager Dygraph.
*/
class
TensorInplaceVersion
{
public:
explicit
TensorInplaceVersion
(
uint32_t
inplace_version
=
0
)
:
inplace_version_
(
inplace_version
)
{}
bool
IsUnique
()
const
{
return
inplace_version_
==
0
;
}
void
Bump
()
{
++
inplace_version_
;
}
uint32_t
CurrentVersion
()
const
{
return
inplace_version_
;
}
void
SetInplaceVersionToZero
()
{
inplace_version_
=
0
;
}
private:
uint32_t
inplace_version_
;
};
/// \brief The Dense tensor store values in a contiguous sequential block
/// of memory where all values are represented. Tensors or multi-dimensional
/// arrays are used in math operators.
...
...
@@ -90,6 +71,8 @@ class DenseTensor : public TensorBase,
DenseTensor
&
operator
=
(
DenseTensor
&&
other
);
DenseTensor
();
/// \brief Destroy the tensor object and release exclusive resources.
virtual
~
DenseTensor
()
=
default
;
...
...
@@ -179,181 +162,6 @@ class DenseTensor : public TensorBase,
DenseTensorMeta
meta_
;
std
::
shared_ptr
<
pten
::
Allocation
>
holder_
;
/* --------------------------- */
/* From framework::Tensor */
/* --------------------------- */
/* The following members & interfaces were copied from framework::Tensor,
so as to facilitate the unification of different Tensors
Will be adjusted/removed/moved in the near future
*/
public:
/* @jim19930609: The way default constructor handles allocator might change,
according to
the final design of Allocation - Allocator.
*/
DenseTensor
();
/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
explicit
DenseTensor
(
paddle
::
framework
::
proto
::
VarType
::
Type
dtype
);
/// \brief Use existing storage space to create dense tensor. This interface
/// can be used to deliberately create an uninitialized dense tensor.
/// \param storage The existing storage.
/// \param meta The meta data of dense tensor.
DenseTensor
(
intrusive_ptr
<
Storage
>
storage
,
const
DenseTensorMeta
&
meta
);
/// \brief Use existing storage space to create dense tensor. This interface
/// can be used to deliberately create an uninitialized dense tensor.
/// \param storage The existing storage.
/// \param meta The meta data of dense tensor.
DenseTensor
(
intrusive_ptr
<
Storage
>
storage
,
DenseTensorMeta
&&
meta
);
inline
bool
IsInitialized
()
const
{
return
holder_
!=
nullptr
;
}
template
<
typename
T
>
T
*
data
();
void
*
data
();
template
<
typename
T
>
T
*
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
=
0
);
template
<
typename
T
>
T
*
mutable_data
(
const
DDim
&
dims
,
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
=
0
);
void
*
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
,
const
paddle
::
platform
::
Stream
&
stream
);
/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
paddle
::
framework
::
proto
::
VarType
::
Type
type
()
const
;
/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
paddle
::
framework
::
proto
::
VarType
::
Type
saved_type
()
const
;
// memory size returns the holding memory size in byte.
size_t
memory_size
()
const
;
void
check_memory_size
()
const
;
void
set_layout
(
const
paddle
::
framework
::
DataLayout
layout
);
void
clear
()
{
holder_
.
reset
();
meta_
.
offset
=
0
;
}
void
ShareBufferWith
(
const
DenseTensor
&
tensor
);
void
ShareDataTypeWith
(
const
DenseTensor
&
tensor
)
{
meta_
.
dtype
=
tensor
.
meta
().
dtype
;
}
bool
IsSharedBufferWith
(
const
DenseTensor
&
src
)
const
{
return
holder_
&&
holder_
==
src
.
Holder
();
}
const
std
::
shared_ptr
<
pten
::
Allocation
>&
Holder
()
const
{
return
holder_
;
}
void
set_offset
(
size_t
offset
)
{
meta_
.
offset
=
offset
;
}
size_t
offset
()
const
{
return
meta_
.
offset
;
}
std
::
shared_ptr
<
pten
::
Allocation
>
MoveMemoryHolder
()
{
return
std
::
move
(
holder_
);
}
void
ResetHolder
(
const
std
::
shared_ptr
<
pten
::
Allocation
>&
holder
);
void
ResetHolderWithType
(
const
std
::
shared_ptr
<
pten
::
Allocation
>&
holder
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
);
void
set_type
(
paddle
::
framework
::
proto
::
VarType
::
Type
type
);
TensorInplaceVersion
&
InplaceVersionCounter
()
{
return
*
inplace_version_counter_
;
}
/*! The internal of two tensors share the same memory block. */
DenseTensor
&
ShareDataWith
(
const
DenseTensor
&
src
);
/*! The internal of two tensors share the same inplace version counter. */
DenseTensor
&
ShareInplaceVersionCounterWith
(
const
DenseTensor
&
src
);
DenseTensor
Slice
(
int64_t
begin_idx
,
int64_t
end_idx
)
const
;
std
::
vector
<
DenseTensor
>
Split
(
int64_t
split_size
,
int64_t
axis
)
const
;
std
::
vector
<
DenseTensor
>
Chunk
(
int64_t
chunks
,
int64_t
axis
)
const
;
protected:
std
::
shared_ptr
<
TensorInplaceVersion
>
inplace_version_counter_
;
/* @jim19930609: This is a hack
In general, it is badly designed to fuse MKLDNN-specific objects into a
generic Tensor.
We temporarily leave them here to unblock Tensor Unification progress.
In the final state, we should come up with a MKLDNN_Tensor and move the
following codes there.
*/
#ifdef PADDLE_WITH_MKLDNN
public:
inline
dnnl
::
memory
::
format_tag
format
()
const
{
return
format_
;
}
inline
void
set_format
(
const
dnnl
::
memory
::
format_tag
format
)
{
format_
=
format
;
}
protected:
/**
* @brief the detail format of memory block which have layout as kMKLDNN
*
* @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C,
* nChw16c, etc. For a MKLDNN memory block, layout will be set as
* DataLayout::kMKLDNN meanwhile detail memory format will be kept in
* this field.
*/
dnnl
::
memory
::
format_tag
format_
=
dnnl
::
memory
::
format_tag
::
undef
;
#endif
/* ------------------------------ */
/* From framework::LoDTensor */
/* ------------------------------ */
/* The following members & interfaces were copied from framework::Tensor,
so as to facilitate the unification of different Tensors
Will be adjusted/removed/moved in the near future
*/
public:
explicit
DenseTensor
(
const
LoD
&
lod
);
void
set_lod
(
const
LoD
&
lod
);
LoD
*
mutable_lod
();
/*
* Get the start offset and end offset of an element from LoD.
*/
std
::
pair
<
size_t
,
size_t
>
lod_element
(
size_t
level
,
size_t
elem
)
const
;
size_t
NumLevels
()
const
;
size_t
NumElements
(
size_t
level
=
0
)
const
;
#include "paddle/pten/core/dense_tensor.inl"
};
}
// namespace pten
paddle/pten/core/dense_tensor.inl
0 → 100644
浏览文件 @
30470853
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
/* --------------------------- */
/* From framework::Tensor */
/* --------------------------- */
/* The following members & interfaces were copied from framework::Tensor,
so as to facilitate the unification of different Tensors
Will be adjusted/removed/moved in the near future
*/
public:
/* Temporarily put InplaceVersion inside DenseTensor.
Will move to AutogradMeta as soon as we switch to Eager Dygraph.
*/
class InplaceVersion {
public:
bool IsUnique() const { return inplace_version_ == 0; }
void Bump() { ++inplace_version_; }
uint32_t CurrentVersion() const { return inplace_version_; }
void SetInplaceVersionToZero() { inplace_version_ = 0; }
private:
uint32_t inplace_version_{0};
};
/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
explicit DenseTensor(paddle::framework::proto::VarType::Type dtype);
/// \brief Use existing storage space to create dense tensor. This interface
/// can be used to deliberately create an uninitialized dense tensor.
/// \param storage The existing storage.
/// \param meta The meta data of dense tensor.
DenseTensor(intrusive_ptr<Storage> storage, const DenseTensorMeta& meta);
/// \brief Use existing storage space to create dense tensor. This interface
/// can be used to deliberately create an uninitialized dense tensor.
/// \param storage The existing storage.
/// \param meta The meta data of dense tensor.
DenseTensor(intrusive_ptr<Storage> storage, DenseTensorMeta&& meta);
inline bool IsInitialized() const { return holder_ != nullptr; }
template <typename T>
T* data();
void* data();
template <typename T>
T* mutable_data(const paddle::platform::Place& place,
size_t requested_size = 0);
template <typename T>
T* mutable_data(const DDim& dims,
const paddle::platform::Place& place,
size_t requested_size = 0);
void* mutable_data(const paddle::platform::Place& place,
paddle::framework::proto::VarType::Type type,
size_t requested_size = 0);
void* mutable_data(const paddle::platform::Place& place,
size_t requested_size = 0);
void* mutable_data(const paddle::platform::Place& place,
paddle::framework::proto::VarType::Type type,
const paddle::platform::Stream& stream);
/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
paddle::framework::proto::VarType::Type type() const;
/* @jim19930609: Remove dependency on protobuf after Tensor Unification.
*/
paddle::framework::proto::VarType::Type saved_type() const;
// memory size returns the holding memory size in byte.
size_t memory_size() const;
void check_memory_size() const;
void set_layout(const paddle::framework::DataLayout layout);
void clear() {
holder_.reset();
meta_.offset = 0;
}
void ShareBufferWith(const DenseTensor& tensor);
void ShareDataTypeWith(const DenseTensor& tensor) {
meta_.dtype = tensor.meta().dtype;
}
bool IsSharedBufferWith(const DenseTensor& src) const {
return holder_ && holder_ == src.Holder();
}
const std::shared_ptr<pten::Allocation>& Holder() const { return holder_; }
void set_offset(size_t offset) { meta_.offset = offset; }
size_t offset() const { return meta_.offset; }
std::shared_ptr<pten::Allocation> MoveMemoryHolder() {
return std::move(holder_);
}
void ResetHolder(const std::shared_ptr<pten::Allocation>& holder);
void ResetHolderWithType(const std::shared_ptr<pten::Allocation>& holder,
paddle::framework::proto::VarType::Type type);
void set_type(paddle::framework::proto::VarType::Type type);
InplaceVersion& InplaceVersionCounter() {
return *inplace_version_counter_;
}
/*! The internal of two tensors share the same memory block. */
DenseTensor& ShareDataWith(const DenseTensor& src);
/*! The internal of two tensors share the same inplace version counter. */
DenseTensor& ShareInplaceVersionCounterWith(const DenseTensor& src);
DenseTensor Slice(int64_t begin_idx, int64_t end_idx) const;
std::vector<DenseTensor> Split(int64_t split_size, int64_t axis) const;
std::vector<DenseTensor> Chunk(int64_t chunks, int64_t axis) const;
protected:
std::shared_ptr<InplaceVersion> inplace_version_counter_{std::make_shared<InplaceVersion>()};
/* @jim19930609: This is a hack
In general, it is badly designed to fuse MKLDNN-specific objects into a
generic Tensor.
We temporarily leave them here to unblock Tensor Unification progress.
In the final state, we should come up with a MKLDNN_Tensor and move the
following codes there.
*/
#ifdef PADDLE_WITH_MKLDNN
public:
inline dnnl::memory::format_tag format() const { return format_; }
inline void set_format(const dnnl::memory::format_tag format) {
format_ = format;
}
protected:
/**
* @brief the detail format of memory block which have layout as kMKLDNN
*
* @note MKLDNN lib support various memory format like nchw, nhwc, nChw8C,
* nChw16c, etc. For a MKLDNN memory block, layout will be set as
* DataLayout::kMKLDNN meanwhile detail memory format will be kept in
* this field.
*/
dnnl::memory::format_tag format_ = dnnl::memory::format_tag::undef;
#endif
/* ------------------------------ */
/* From framework::LoDTensor */
/* ------------------------------ */
/* The following members & interfaces were copied from framework::Tensor,
so as to facilitate the unification of different Tensors
Will be adjusted/removed/moved in the near future
*/
public:
explicit DenseTensor(const LoD& lod);
void set_lod(const LoD& lod);
LoD* mutable_lod();
/*
* Get the start offset and end offset of an element from LoD.
*/
std::pair<size_t, size_t> lod_element(size_t level, size_t elem) const;
size_t NumLevels() const;
size_t NumElements(size_t level = 0) const;
paddle/pten/core/dense_tensor_impl.cc
0 → 100644
浏览文件 @
30470853
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/pten/core/dense_tensor.h"
// See Note [ Why still include the fluid headers? ]
#include "paddle/pten/common/bfloat16.h"
#include "paddle/pten/common/complex.h"
#include "paddle/pten/common/float16.h"
#include "paddle/pten/api/lib/utils/storage.h"
#include "paddle/pten/core/convert_utils.h"
namespace
pten
{
/* --------------------------- */
/* From framework::Tensor */
/* --------------------------- */
DenseTensor
::
DenseTensor
()
{
meta_
.
dtype
=
paddle
::
experimental
::
DataType
::
FLOAT32
;
meta_
.
offset
=
0
;
}
DenseTensor
::
DenseTensor
(
paddle
::
framework
::
proto
::
VarType
::
Type
dtype
)
{
meta_
.
dtype
=
TransToPtenDataType
(
dtype
);
meta_
.
offset
=
0
;
}
size_t
DenseTensor
::
memory_size
()
const
{
return
holder_
==
nullptr
?
0UL
:
holder_
->
size
()
-
meta_
.
offset
;
}
void
DenseTensor
::
check_memory_size
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor holds no memory. "
"Call Tensor::mutable_data firstly."
));
PADDLE_ENFORCE_LE
(
numel
()
*
SizeOf
(
dtype
()),
memory_size
(),
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor's dimension is out of bound."
"Tensor's dimension must be equal or less than the size of its "
"memory."
"But received Tensor's dimension is d%, memory's size is %d."
,
numel
()
*
SizeOf
(
dtype
()),
memory_size
()));
}
const
paddle
::
platform
::
Place
&
DenseTensor
::
place
()
const
{
PADDLE_ENFORCE_NOT_NULL
(
holder_
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor not initialized yet when DenseTensor::place() is called."
));
return
holder_
->
place
();
}
paddle
::
framework
::
proto
::
VarType
::
Type
DenseTensor
::
type
()
const
{
return
TransToProtoVarType
(
meta_
.
dtype
);
}
paddle
::
framework
::
proto
::
VarType
::
Type
DenseTensor
::
saved_type
()
const
{
return
TransToProtoVarType
(
meta_
.
dtype
);
}
void
DenseTensor
::
set_layout
(
const
paddle
::
framework
::
DataLayout
layout
)
{
meta_
.
layout
=
layout
;
}
void
DenseTensor
::
ResetHolder
(
const
std
::
shared_ptr
<
pten
::
Allocation
>&
holder
)
{
PADDLE_ENFORCE_EQ
(
meta_
.
offset
,
0
,
paddle
::
platform
::
errors
::
Fatal
(
"Only the offset is supported to zero when the holder is reset."
));
if
(
holder_
)
{
// TODO(zyfncg): The change of static_cast<> in check will recover back
// when SetAllocationForOutputTenosr is deleted.
// Now the numel() may return -1, and will cast to a very large number when
// compare with a data with unsigned long type, this will make checking
// failed, so it's a temporary solution to deal with this problem.
PADDLE_ENFORCE_LE
(
numel
()
*
static_cast
<
int64_t
>
(
SizeOf
(
dtype
())),
static_cast
<
int64_t
>
(
holder
->
size
()),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The size of Holder is not enough to store the Tensor."
));
}
holder_
=
holder
;
}
void
DenseTensor
::
ResetHolderWithType
(
const
std
::
shared_ptr
<
pten
::
Allocation
>&
holder
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
)
{
set_type
(
type
);
ResetHolder
(
holder
);
}
void
DenseTensor
::
set_type
(
paddle
::
framework
::
proto
::
VarType
::
Type
type
)
{
meta_
.
dtype
=
TransToPtenDataType
(
type
);
}
void
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
,
size_t
requested_size
)
{
set_type
(
type
);
PADDLE_ENFORCE_GE
(
numel
(),
0
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"The Tensor's element number must be equal or greater than zero. "
"The Tensor's shape is ["
,
dims
(),
"] now"
));
size_t
size
=
numel
()
*
SizeOf
(
dtype
());
if
(
requested_size
&&
(
requested_size
>
size
))
{
size
=
requested_size
;
}
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
meta_
.
offset
)
{
holder_
.
reset
();
holder_
=
paddle
::
memory
::
AllocShared
(
place
,
size
);
meta_
.
offset
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
meta_
.
offset
);
}
void
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
)
{
return
mutable_data
(
place
,
type
(),
requested_size
);
}
void
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
paddle
::
framework
::
proto
::
VarType
::
Type
type
,
const
paddle
::
platform
::
Stream
&
stream
)
{
set_type
(
type
);
PADDLE_ENFORCE_GE
(
numel
(),
0
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"The Tensor's element number must be equal or greater than zero. "
"The Tensor's shape is ["
,
dims
(),
"] now"
));
size_t
size
=
numel
()
*
SizeOf
(
dtype
());
/* some versions of boost::variant don't have operator!= */
if
(
holder_
==
nullptr
||
!
(
holder_
->
place
()
==
place
)
||
holder_
->
size
()
<
size
+
meta_
.
offset
||
!
(
paddle
::
platform
::
is_gpu_place
(
place
)
&&
paddle
::
memory
::
InSameStream
(
holder_
,
stream
)))
{
holder_
.
reset
();
holder_
=
paddle
::
memory
::
AllocShared
(
place
,
size
,
stream
);
meta_
.
offset
=
0
;
}
return
reinterpret_cast
<
void
*>
(
reinterpret_cast
<
uintptr_t
>
(
holder_
->
ptr
())
+
meta_
.
offset
);
}
/* @jim19930609: The following "mutable_data" only supports specific dtypes
defined in OpProto. This part need another clean up once the data type across
Fluid
and Pten get unified.
*/
template
<
typename
T
>
inline
T
*
DenseTensor
::
mutable_data
(
const
DDim
&
dims
,
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
meta_
.
dims
=
dims
;
return
mutable_data
<
T
>
(
place
,
requested_size
);
}
template
<
typename
T
>
inline
T
*
DenseTensor
::
mutable_data
(
const
paddle
::
platform
::
Place
&
place
,
size_t
requested_size
)
{
static_assert
(
std
::
is_pod
<
T
>::
value
,
"T must be POD"
);
return
reinterpret_cast
<
T
*>
(
mutable_data
(
place
,
paddle
::
framework
::
DataTypeTrait
<
T
>::
DataType
(),
requested_size
));
}
void
DenseTensor
::
ShareBufferWith
(
const
DenseTensor
&
tensor
)
{
holder_
=
tensor
.
holder_
;
meta_
.
offset
=
tensor
.
meta
().
offset
;
meta_
.
dtype
=
tensor
.
dtype
();
}
#define LEGACY_DATA_MEMBER_FUNC_INSTANTIATION(dtype) \
template dtype* DenseTensor::mutable_data( \
const DDim& dims, \
const paddle::platform::Place& place, \
size_t requested_size); \
template dtype* DenseTensor::mutable_data( \
const paddle::platform::Place& place, size_t requested_size);
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
bool
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int8_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
uint8_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int16_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int32_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
int64_t
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
float
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
double
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
platform
::
bfloat16
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
platform
::
float16
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
experimental
::
complex64
)
LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
(
::
paddle
::
experimental
::
complex128
)
#undef LEGACY_DATA_MEMBER_FUNC_INSTANTIATION
/* ------------------------------ */
/* From framework::LoDTensor */
/* ------------------------------ */
DenseTensor
::
DenseTensor
(
intrusive_ptr
<
Storage
>
storage
,
const
DenseTensorMeta
&
meta
)
:
meta_
(
meta
),
holder_
(
storage
->
move_data_shared
())
{}
DenseTensor
::
DenseTensor
(
intrusive_ptr
<
Storage
>
storage
,
DenseTensorMeta
&&
meta
)
:
meta_
(
std
::
move
(
meta
)),
holder_
(
storage
->
move_data_shared
())
{}
DenseTensor
::
DenseTensor
(
const
LoD
&
lod
)
:
DenseTensor
()
{
meta_
.
lod
=
lod
;
}
void
DenseTensor
::
set_lod
(
const
LoD
&
lod
)
{
meta_
.
lod
=
lod
;
}
LoD
*
DenseTensor
::
mutable_lod
()
{
return
&
meta_
.
lod
;
}
std
::
pair
<
size_t
,
size_t
>
DenseTensor
::
lod_element
(
size_t
level
,
size_t
elem
)
const
{
PADDLE_ENFORCE_LT
(
level
,
NumLevels
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The input level of LoD is invalid, it should be less than LoD "
"size. The input level is %zu, the LoD size is %zu."
,
level
,
NumLevels
()));
PADDLE_ENFORCE_LT
(
elem
,
NumElements
(
level
),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The input element of LoD is invalid, it should be "
"less than the number of elements in its level."
"The input element is %zu, the number of elements in "
"its level is %zu."
,
elem
,
NumElements
(
level
)));
return
std
::
make_pair
((
meta_
.
lod
)[
level
][
elem
],
(
meta_
.
lod
)[
level
][
elem
+
1
]);
}
size_t
DenseTensor
::
NumLevels
()
const
{
return
meta_
.
lod
.
size
();
}
size_t
DenseTensor
::
NumElements
(
size_t
level
)
const
{
PADDLE_ENFORCE_LT
(
level
,
NumLevels
(),
paddle
::
platform
::
errors
::
InvalidArgument
(
"The input level of LoD is invalid, it should be less than LoD "
"size. The input level is %zu, the LoD size is %zu."
,
level
,
NumLevels
()));
// the last offset is the end of last element
return
(
meta_
.
lod
)[
level
].
size
()
-
1
;
}
DenseTensor
&
DenseTensor
::
Resize
(
const
DDim
&
dims
)
{
meta_
.
dims
=
dims
;
return
*
this
;
}
DenseTensor
DenseTensor
::
Slice
(
int64_t
begin_idx
,
int64_t
end_idx
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"The start row index must be greater than 0."
"But received the start index is d%."
,
begin_idx
));
PADDLE_ENFORCE_LE
(
end_idx
,
meta_
.
dims
[
0
],
paddle
::
platform
::
errors
::
OutOfRange
(
"The end row index is out of bound."
));
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
paddle
::
platform
::
errors
::
InvalidArgument
(
"The start row index must be less than the end row index."
"But received the start index = %d, the end index = %d."
,
begin_idx
,
end_idx
));
if
(
meta_
.
dims
[
0
]
==
1
)
{
return
*
this
;
}
else
{
size_t
base
=
numel
()
/
meta_
.
dims
[
0
];
DenseTensor
dst
;
dst
.
holder_
=
holder_
;
dst
.
set_layout
(
meta_
.
layout
);
dst
.
meta_
.
dtype
=
meta_
.
dtype
;
DDim
dst_dims
=
meta_
.
dims
;
dst_dims
[
0
]
=
end_idx
-
begin_idx
;
dst
.
Resize
(
dst_dims
);
dst
.
meta_
.
offset
=
meta_
.
offset
+
begin_idx
*
base
*
SizeOf
(
dtype
());
return
dst
;
}
}
std
::
vector
<
DenseTensor
>
DenseTensor
::
Split
(
int64_t
split_size
,
int64_t
axis
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
meta_
.
dims
.
size
(),
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"split expects at least a 1-dimensional tensor"
));
PADDLE_ENFORCE_GE
(
split_size
,
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"split expects split_size be non-negative, but got split_size is %d"
,
split_size
));
int64_t
numel_size
=
meta_
.
dims
[
axis
];
int64_t
num_splits
=
1
;
if
(
split_size
!=
0
)
{
num_splits
=
std
::
max
<
int64_t
>
((
numel_size
+
split_size
-
1
)
/
split_size
,
1
);
}
std
::
vector
<
DenseTensor
>
splits
(
num_splits
);
int64_t
last_split_size
=
split_size
-
(
split_size
*
num_splits
-
numel_size
);
for
(
int64_t
i
=
0
;
i
<
num_splits
;
++
i
)
{
int64_t
length
=
i
<
num_splits
-
1
?
split_size
:
last_split_size
;
splits
[
i
]
=
Slice
(
i
*
split_size
,
i
*
split_size
+
length
);
}
return
splits
;
}
std
::
vector
<
DenseTensor
>
DenseTensor
::
Chunk
(
int64_t
chunks
,
int64_t
axis
)
const
{
check_memory_size
();
PADDLE_ENFORCE_GE
(
meta_
.
dims
.
size
(),
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"split expects at least a 1-dimensional tensor"
));
PADDLE_ENFORCE_GE
(
chunks
,
0
,
paddle
::
platform
::
errors
::
OutOfRange
(
"chunks expects to be greater than 0, but got chunks is %d"
,
chunks
));
int64_t
numel_size
=
meta_
.
dims
[
axis
];
int64_t
split_size
=
(
numel_size
+
chunks
-
1
)
/
chunks
;
return
Split
(
split_size
,
axis
);
}
DenseTensor
&
DenseTensor
::
ShareDataWith
(
const
DenseTensor
&
src
)
{
src
.
check_memory_size
();
// Preserve LoD
auto
lod
=
meta_
.
lod
;
*
this
=
src
;
meta_
.
lod
=
lod
;
return
*
this
;
}
DenseTensor
&
DenseTensor
::
ShareInplaceVersionCounterWith
(
const
DenseTensor
&
src
)
{
PADDLE_ENFORCE_NOT_NULL
(
inplace_version_counter_
,
paddle
::
platform
::
errors
::
PreconditionNotMet
(
"Tensor does not hold inplace_version_counter_."
));
inplace_version_counter_
=
src
.
inplace_version_counter_
;
return
*
this
;
}
}
// namespace pten
paddle/pten/core/tensor_status.h
已删除
100644 → 0
浏览文件 @
01d04be6
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/pten/common/backend.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/common/layout.h"
namespace
pten
{
class
TensorInplaceVersion
{
public:
explicit
TensorInplaceVersion
(
uint32_t
inplace_version
=
0
)
:
inplace_version_
(
inplace_version
)
{}
bool
IsUnique
()
const
{
return
inplace_version_
==
0
;
}
void
Bump
()
{
++
inplace_version_
;
}
uint32_t
CurrentVersion
()
const
{
return
inplace_version_
;
}
private:
uint32_t
inplace_version_
;
};
/**
* The Status data member of DenseTensor.
*
* Here the `static` represents information describing the status of Tensor,
* such as version counter, or other bool status members.
*
* Note: TensorStatus is a struct, the members are named like
* ordinary nonmember variables, such as `type` instead of `type_`.
* And we direct access its members, in addition to constructor, destructor
* and functions for setting data members, can not provide other functions.
*
* Note: polish impl later
*/
struct
TensorStatus
{
TensorStatus
()
=
default
;
TensorStatus
(
const
TensorStatus
&
)
=
default
;
TensorStatus
(
TensorStatus
&&
)
=
default
;
TensorStatus
&
operator
=
(
const
TensorStatus
&
)
=
delete
;
TensorStatus
&
operator
=
(
TensorStatus
&&
)
=
delete
;
TensorInplaceVersion
inplace_version_counter
{
0
};
/**
* For Scalar Tensor design
*/
bool
is_scalar
{
false
};
};
}
// namespace pten
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录