dense_tensor.cc 10.0 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
40

41
namespace phi {
42

43
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
44
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
45

46
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
47
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
48

49
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
50
                         const DenseTensorMeta& meta)
51
    : meta_(meta), holder_(holder) {}
52

53
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
54
  holder_ = other.holder_;
55 56
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
57
  inplace_version_counter_ = other.inplace_version_counter_;
58 59

#ifdef PADDLE_WITH_MKLDNN
60
  mem_desc_ = other.mem_desc_;
61 62
#endif
}
63

64 65
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
66
  holder_ = other.holder_;
67 68
  storage_properties_ =
      std::move(CopyStorageProperties(other.storage_properties_));
69
  inplace_version_counter_ = other.inplace_version_counter_;
70
#ifdef PADDLE_WITH_MKLDNN
71
  mem_desc_ = other.mem_desc_;
72
#endif
73 74 75
  return *this;
}

76 77
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
78
  std::swap(holder_, other.holder_);
79
  storage_properties_ = std::move(other.storage_properties_);
80
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
81 82 83
#ifdef PADDLE_WITH_MKLDNN
  mem_desc_ = other.mem_desc_;
#endif
84 85 86
  return *this;
}

87 88 89 90 91 92 93 94
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
95
  return holder_ && holder_ == b.Holder();
96 97
}

98 99
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
100 101
                                size_t requested_size,
                                bool fake_alloc) {
102 103
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
104
      phi::errors::InvalidArgument(
105 106 107 108 109
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
110

111
  size_t bytes = numel() * SizeOf(this->dtype());
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  if (fake_alloc) {
    bytes = 0;
  } else {
    PADDLE_ENFORCE(
        valid(),
        phi::errors::PreconditionNotMet("The meta data must be valid when "
                                        "call the mutable data function."));
    if (requested_size) {
      PADDLE_ENFORCE_GE(requested_size,
                        bytes,
                        phi::errors::InvalidArgument(
                            "The reserved size %d should be enough to meet the "
                            "volume required by metadata %d.",
                            requested_size,
                            bytes));
      bytes = requested_size;
    }
130
  }
131

132 133 134
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
135 136 137
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
138 139 140 141 142 143 144 145 146 147
    auto holder = allocator->Allocate(bytes);
    if (holder_) {
      PADDLE_ENFORCE_LE(
          numel() * static_cast<int64_t>(SizeOf(dtype)) +
              static_cast<int64_t>(meta_.offset),
          static_cast<int64_t>(holder->size()),
          phi::errors::InvalidArgument(
              "The size of Holder is not enough to store the Tensor."));
    }
    holder_ = std::move(holder);
148 149 150 151 152 153
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

154 155
template <typename T>
const T* DenseTensor::data() const {
H
hong 已提交
156 157
  PADDLE_ENFORCE_EQ(
      dtype(),
158
      phi::CppTypeToDataType<T>::Type(),
159
      phi::errors::InvalidArgument(
160 161
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
162
          phi::CppTypeToDataType<T>::Type(),
163
          dtype()));
164 165 166
  return static_cast<const T*>(data());
}

167 168
template <typename T>
T* DenseTensor::data() {
169
  T* ret = static_cast<T*>(data());
170
  PADDLE_ENFORCE(
171
      (dtype() == phi::CppTypeToDataType<T>::Type()),
172
      phi::errors::InvalidArgument(
173 174
          "The type of data we are trying to retrieve (%s) does not match the "
          "type of data (%s) currently contained in the container.",
175
          phi::CppTypeToDataType<T>::Type(),
176
          dtype()));
177
  return ret;
178 179
}

180
void* DenseTensor::data() {
181
  check_memory_size();
182
  PADDLE_ENFORCE_NOT_NULL(
183
      holder_,
184
      phi::errors::PreconditionNotMet(
185 186
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
187
                                 meta_.offset);
188 189
}

190
const void* DenseTensor::data() const {
191
  check_memory_size();
192
  PADDLE_ENFORCE_NOT_NULL(
193
      holder_,
194
      phi::errors::PreconditionNotMet(
195
          "The storage must be valid when call the data function."));
196
  return reinterpret_cast<const void*>(
197
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
198 199
}

200 201
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
202
                 phi::errors::InvalidArgument(
203 204 205
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
206 207
}

208 209 210
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
211
      phi::errors::InvalidArgument(
212 213 214 215 216 217 218
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
219
  meta_.use_gpudnn = meta.use_gpudnn;
220 221
}

222
/* @jim19930609: This interface will be further modified until we finalized the
223 224 225 226 227 228 229 230 231
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
232
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
233
  meta_.dims = dims;
234 235
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
236
  }
石晓伟 已提交
237 238
}

239 240
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

241 242 243
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
244 245 246 247 248 249 250 251 252 253

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
254 255
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
256 257
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
258 259
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
260 261 262

#undef DATA_MEMBER_FUNC_INSTANTIATION

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
template <typename DeviceT>
const DeviceT& DenseTensor::storage_properties() const {
  PADDLE_ENFORCE_NOT_NULL(
      storage_properties_,
      phi::errors::PreconditionNotMet(
          "The storage_properties of current DenseTensor is nullptr."));
  if (DeviceT::classof(storage_properties_.get())) {
    return static_cast<DeviceT&>(*storage_properties_);
  } else {
    PADDLE_THROW(phi::errors::InvalidArgument(
        "The actual type of storage_properties is inconsistent with the type "
        "of the template parameter passed in."));
  }
}

template const NPUStorageProperties& DenseTensor::storage_properties() const;
#ifdef PADDLE_WITH_MKLDNN
template const OneDNNStorageProperties& DenseTensor::storage_properties() const;
#endif

283 284 285 286
bool DenseTensor::storage_properties_initialized() const {
  return storage_properties_ != nullptr;
}

287 288 289 290 291
void DenseTensor::set_storage_properties(
    std::unique_ptr<StorageProperties>&& storage_properties) {
  storage_properties_ = std::move(storage_properties);
}

292
}  // namespace phi