dense_tensor.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
21

22 23
// See Note [ Why still include the fluid headers? ]
#include "paddle/fluid/memory/malloc.h"
24

25
namespace phi {
26

27
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
28
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
29

30
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
31
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
32

33
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
34
                         const DenseTensorMeta& meta)
35
    : meta_(meta), holder_(holder) {}
36

37
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
38
  holder_ = other.holder_;
39 40 41 42 43

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
}
44

45 46
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
47
  holder_ = other.holder_;
48 49 50
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
51 52 53
  return *this;
}

54 55
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
56
  std::swap(holder_, other.holder_);
57 58 59
  return *this;
}

60 61 62 63 64 65 66 67
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
68
  return holder_ && holder_ == b.Holder();
69 70
}

71 72 73 74 75
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
                                size_t requested_size) {
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
76
      phi::errors::InvalidArgument(
77 78 79 80 81 82 83
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
  PADDLE_ENFORCE(
      valid(),
84
      phi::errors::PreconditionNotMet(
85 86 87 88 89
          "The meta data must be valid when call the mutable data function."));
  size_t bytes = numel() * SizeOf(this->dtype());
  if (requested_size) {
    PADDLE_ENFORCE_GE(requested_size,
                      bytes,
90
                      phi::errors::InvalidArgument(
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          requested_size,
                          bytes));
    bytes = requested_size;
  }
  // TODO(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we should re-alloc data using the incoming
  // allocator.
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
    ResetHolder(allocator->Allocate(bytes));
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

110 111
template <typename T>
const T* DenseTensor::data() const {
112
  check_memory_size();
113
  PADDLE_ENFORCE(
114
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
115
      phi::errors::InvalidArgument(
116 117 118 119 120
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

121 122 123 124 125
template <typename T>
T* DenseTensor::data() {
  check_memory_size();
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
126
      phi::errors::InvalidArgument(
127 128
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
129
  return static_cast<T*>(data());
130 131
}

132
void* DenseTensor::data() {
133
  check_memory_size();
134
  PADDLE_ENFORCE_NOT_NULL(
135
      holder_,
136
      phi::errors::PreconditionNotMet(
137 138
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
139
                                 meta_.offset);
140 141
}

142
const void* DenseTensor::data() const {
143
  check_memory_size();
144
  PADDLE_ENFORCE_NOT_NULL(
145
      holder_,
146
      phi::errors::PreconditionNotMet(
147
          "The storage must be valid when call the data function."));
148
  return reinterpret_cast<const void*>(
149
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
150 151
}

152 153
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
154
                 phi::errors::InvalidArgument(
155 156 157
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
158 159
}

160 161 162
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
163
      phi::errors::InvalidArgument(
164 165 166 167 168 169 170 171 172
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
}

173 174 175 176 177 178 179 180 181 182
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
183
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
184
  meta_.dims = dims;
185 186
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
187
  }
石晓伟 已提交
188 189
}

190 191
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

192 193 194
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
195 196 197 198 199 200 201 202 203 204

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
205 206
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
207 208
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
209 210
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
211 212 213

#undef DATA_MEMBER_FUNC_INSTANTIATION

214
}  // namespace phi