dense_tensor.cc 8.1 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/core/dense_tensor.h"
16

17 18 19 20
#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/compat/convert_utils.h"
21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
 * [Tensor Operation Library, phi], so we extract or rewrite the original
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
40
#include "paddle/fluid/memory/malloc.h"
41

42
namespace phi {
43

44
DenseTensor::DenseTensor(Allocator* a, const DenseTensorMeta& meta)
45
    : meta_(meta), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
46

47
DenseTensor::DenseTensor(Allocator* a, DenseTensorMeta&& meta)
48
    : meta_(std::move(meta)), holder_(a->Allocate(SizeOf(dtype()) * numel())) {}
49

50
DenseTensor::DenseTensor(const std::shared_ptr<phi::Allocation>& holder,
51
                         const DenseTensorMeta& meta)
52
    : meta_(meta), holder_(holder) {}
53

54
DenseTensor::DenseTensor(const DenseTensor& other) : meta_(other.meta()) {
55
  holder_ = other.holder_;
56
  inplace_version_counter_ = other.inplace_version_counter_;
57 58 59 60 61

#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
}
62

63 64
DenseTensor& DenseTensor::operator=(const DenseTensor& other) {
  meta_ = other.meta();
65
  holder_ = other.holder_;
66
  inplace_version_counter_ = other.inplace_version_counter_;
67 68 69
#ifdef PADDLE_WITH_MKLDNN
  format_ = other.format_;
#endif
70 71 72
  return *this;
}

73 74
DenseTensor& DenseTensor::operator=(DenseTensor&& other) {
  meta_ = std::move(other.meta_);
75
  std::swap(holder_, other.holder_);
76
  std::swap(inplace_version_counter_, other.inplace_version_counter_);
77 78 79
  return *this;
}

80 81 82 83 84 85 86 87
int64_t DenseTensor::numel() const {
  if (meta_.is_scalar) {
    return 1;
  }
  return product(meta_.dims);
}

bool DenseTensor::IsSharedWith(const DenseTensor& b) const {
88
  return holder_ && holder_ == b.Holder();
89 90
}

91 92 93 94 95
void* DenseTensor::AllocateFrom(Allocator* allocator,
                                DataType dtype,
                                size_t requested_size) {
  PADDLE_ENFORCE_NOT_NULL(
      allocator,
96
      phi::errors::InvalidArgument(
97 98 99 100 101 102 103
          "Required allocator shall not be nullptr, but received nullptr."));
  if (this->dtype() != dtype) {
    VLOG(10) << "change data type in mutbale_data, target dtype - " << dtype;
    meta_.dtype = dtype;
  }
  PADDLE_ENFORCE(
      valid(),
104
      phi::errors::PreconditionNotMet(
105 106 107 108 109
          "The meta data must be valid when call the mutable data function."));
  size_t bytes = numel() * SizeOf(this->dtype());
  if (requested_size) {
    PADDLE_ENFORCE_GE(requested_size,
                      bytes,
110
                      phi::errors::InvalidArgument(
111 112 113 114 115 116
                          "The reserved size %d should be enough to meet the "
                          "volume required by metadata %d.",
                          requested_size,
                          bytes));
    bytes = requested_size;
  }
117 118 119
  // NOTE(paddle-dev): In case of the allocator of storage_ is different with
  // the incoming allocator, we will re-alloc data using the incoming
  // allocator. See DeviceContext.Alloc in core/device_context.cc.
120 121 122 123 124 125 126 127 128 129
  if (!holder_ || holder_->size() < bytes + meta_.offset) {
    meta_.offset = 0;
    VLOG(10) << "Allocate data with bytes: " << bytes;
    ResetHolder(allocator->Allocate(bytes));
  }

  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
                                 meta_.offset);
}

130 131
template <typename T>
const T* DenseTensor::data() const {
132
  check_memory_size();
H
hong 已提交
133 134 135
  PADDLE_ENFORCE_EQ(
      dtype(),
      paddle::experimental::CppTypeToDataType<T>::Type(),
136
      phi::errors::InvalidArgument(
137 138 139 140 141
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
  return static_cast<const T*>(data());
}

142 143 144 145 146
template <typename T>
T* DenseTensor::data() {
  check_memory_size();
  PADDLE_ENFORCE(
      (dtype() == paddle::experimental::CppTypeToDataType<T>::Type()),
147
      phi::errors::InvalidArgument(
148 149
          "The type of data we are trying to retrieve does not match the "
          "type of data currently contained in the container."));
150
  return static_cast<T*>(data());
151 152
}

153
void* DenseTensor::data() {
154
  check_memory_size();
155
  PADDLE_ENFORCE_NOT_NULL(
156
      holder_,
157
      phi::errors::PreconditionNotMet(
158 159
          "The storage must be valid when call the data function."));
  return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(holder_->ptr()) +
160
                                 meta_.offset);
161 162
}

163
const void* DenseTensor::data() const {
164
  check_memory_size();
165
  PADDLE_ENFORCE_NOT_NULL(
166
      holder_,
167
      phi::errors::PreconditionNotMet(
168
          "The storage must be valid when call the data function."));
169
  return reinterpret_cast<const void*>(
170
      reinterpret_cast<uintptr_t>(holder_->ptr()) + meta_.offset);
171 172
}

173 174
void DenseTensor::set_meta(DenseTensorMeta&& meta) {
  PADDLE_ENFORCE(!meta_.valid(),
175
                 phi::errors::InvalidArgument(
176 177 178
                     "Only when the original attribute of Tensor is "
                     "incomplete, can it be reset."));
  meta_ = std::move(meta);
石晓伟 已提交
179 180
}

181 182 183
void DenseTensor::set_meta(const DenseTensorMeta& meta) {
  PADDLE_ENFORCE(
      meta.valid(),
184
      phi::errors::InvalidArgument(
185 186 187 188 189 190 191 192 193
          "Input meta is invalid, please check the meta attribute."));
  meta_.dims = meta.dims;
  meta_.dtype = meta.dtype;
  meta_.is_scalar = meta.is_scalar;
  meta_.layout = meta.layout;
  meta_.lod = meta.lod;
  meta_.offset = meta.offset;
}

194 195 196 197 198 199 200 201 202 203
/* @jim19930609: This interface will be further modified util we finalized the
   design for Allocator - Allocation
   For now, we have to temporarily accommodate two independent use cases:
   1. Designed behaviour: DenseTensor constructed with its underlying storage_
   initialized
   2. Legacy behaviour(fluid): DenseTensor constructed using default
   constructor, where
                               storage_ won't be initialized until the first
   call to mutable_data(place)
   */
204
void DenseTensor::ResizeAndAllocate(const DDim& dims) {
石晓伟 已提交
205
  meta_.dims = dims;
206 207
  if (holder_ != nullptr && place().GetType() != AllocationType::UNDEFINED) {
    mutable_data(place());
208
  }
石晓伟 已提交
209 210
}

211 212
void DenseTensor::ResetLoD(const LoD& lod) { meta_.lod = lod; }

213 214 215
#define DATA_MEMBER_FUNC_INSTANTIATION(dtype)      \
  template const dtype* DenseTensor::data() const; \
  template dtype* DenseTensor::data();
216 217 218 219 220 221 222 223 224 225

DATA_MEMBER_FUNC_INSTANTIATION(bool);
DATA_MEMBER_FUNC_INSTANTIATION(int8_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint8_t);
DATA_MEMBER_FUNC_INSTANTIATION(int16_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint16_t);
DATA_MEMBER_FUNC_INSTANTIATION(int32_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint32_t);
DATA_MEMBER_FUNC_INSTANTIATION(int64_t);
DATA_MEMBER_FUNC_INSTANTIATION(uint64_t);
226 227
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::bfloat16);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::float16);
228 229
DATA_MEMBER_FUNC_INSTANTIATION(float);
DATA_MEMBER_FUNC_INSTANTIATION(double);
230 231
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<float>);
DATA_MEMBER_FUNC_INSTANTIATION(::phi::dtype::complex<double>);
232 233 234

#undef DATA_MEMBER_FUNC_INSTANTIATION

235
}  // namespace phi