sharding_optimizer.py 82.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import os
W
wangxiaoning 已提交
16 17 18
from paddle.fluid import core
from paddle.utils import unique_name
from paddle.fluid.optimizer import PipelineOptimizer
19
from paddle.static import default_startup_program, device_guard
W
wangxiaoning 已提交
20
from paddle.static import create_global_var
21

22
from .common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper, OP_ROLE_KEY
23 24 25 26 27 28 29 30 31
from .common import is_backward_op, is_optimizer_op, is_update_op
from .meta_optimizer_base import MetaOptimizerBase
from .sharding.shard import Shard, ProgramSegment
from .sharding.fp16_helper import FP16Utils
from .sharding.weight_decay_helper import WeightDecayHelper
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
from .sharding import utils
32 33 34 35 36 37 38 39 40 41 42 43 44
from .sharding.utils import (
    insert_sync_calc_op,
    insert_sync_comm_ops,
    insert_fill_constant_ops,
    insert_cast_ops,
    insert_allreduce_ops,
    insert_reduce_ops,
    get_grad_device,
    get_first_optimize_op_idx,
    insert_broadcast_ops,
    get_var_size,
    insert_scale_loss_grad_ops,
)
R
Roc 已提交
45
from ..utils.log_util import logger
46

47
__all__ = []
48 49 50


class ShardingOptimizer(MetaOptimizerBase):
51 52
    """Sharding Optimizer."""

53
    def __init__(self, optimizer):
54
        super().__init__(optimizer)
55 56 57 58
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
59 60
            "LarsOptimizer",
            "LambOptimizer",
M
minghaoBD 已提交
61
            "ASPOptimizer",
62 63
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
64
        ]
65 66 67
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer",
        ]
68 69 70 71 72 73 74 75 76
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
77 78 79 80
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
81 82 83 84 85 86 87 88 89 90 91 92 93 94

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
95
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
96

W
WangXi 已提交
97
    def _get_sharding_segment_strategy(self):
98
        """get
W
WangXi 已提交
99 100 101 102 103 104 105 106 107
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
108

W
WangXi 已提交
109 110
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
111 112 113
            assert (
                self._broadcast_MB > 0
            ), "segment size should larger than zero !"
W
WangXi 已提交
114 115
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
116 117 118
            assert (
                len(self._sharding_segment_anchors) > 0
            ), "you should set the sharding segment anchors !"
119 120 121 122 123
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
124 125 126
                    str(segment_strategy)
                )
            )
W
WangXi 已提交
127 128 129
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
130
        """get
W
WangXi 已提交
131 132 133 134 135 136 137 138
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
139

140
        # parallelism
W
WangXi 已提交
141 142 143 144 145 146 147
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
148 149
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
150 151 152
        if pp_degree > 1:
            assert strategy.pipeline is True

L
lilong12 已提交
153
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
154 155 156 157 158 159 160 161
            assert pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                global_world_size == mp_degree * sharding_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                global_world_size, mp_degree, sharding_degree, dp_degree
            )
L
lilong12 已提交
162
        else:
163 164 165 166 167 168 169 170 171 172
            assert (
                global_world_size
                == mp_degree * sharding_degree * pp_degree * dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                global_world_size,
                mp_degree,
                sharding_degree,
                pp_degree,
                dp_degree,
            )
173

J
JZ-LIANG 已提交
174
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
175
        if sharding_configs["hybrid_dp"]:
176
            logger.warning(
W
WangXi 已提交
177
                "[hybrid_dp] API setting is deprecated. Now when "
178 179
                "dp_degree >= 2, its will be in hybrid dp mode automatically"
            )
W
WangXi 已提交
180 181 182 183 184 185 186 187 188
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
189
        """get
190 191
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
192 193
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
194
        self._optimizer_sharding
W
WangXi 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
208 209 210
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
211
                dp_mode = "pp_hybrid_dp"
212
            else:
213 214
                assert self.sharding_degree > 1, (
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, "
W
WangXi 已提交
215
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
216
                )
W
WangXi 已提交
217
                dp_mode = "sharding_hybrid_dp"
218

219
        # gradient merge
W
WangXi 已提交
220 221
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
222
        if self.pp_degree <= 1:
W
WangXi 已提交
223
            gm_mode = "sharding_gm"
224 225
            self._grad2merged_grad = dict()
        else:
W
WangXi 已提交
226 227
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
228
            gradient_scale_configs = strategy.gradient_scale_configs
229 230 231 232 233 234 235
            assert gradient_scale_configs['scale_strategy'] == 'avg', (
                'For pipeline mode, the '
                'gradient scale mode should '
                'be "avg", but got {}'.format(
                    gradient_scale_configs['scale_strategy']
                )
            )
236 237 238 239
            # Note (Yuang Liu): this avg_loss flag determines where to do the average op for grad merge.
            # If True, will do sum firstly for gradient merge, then do scale by gm_acc_step.
            # If False, will scale loss by gm_acc_step first, then do sum for gradient merge.
            self.scale_gradient = gradient_scale_configs['scale_gradient']
W
WangXi 已提交
240
        if gm_acc_step > 1:
241 242 243 244 245
            logger.info(
                "Gradient merge in [{}], acc step = [{}]".format(
                    gm_mode, gm_acc_step
                )
            )
246

247 248 249
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
250 251 252 253 254 255
        if (
            self.sharding_degree == 1
            and self.dp_degree > 1
            and sharding_configs['_dp_as_optimizer_sharding']
            and self.pp_degree > 1
        ):
256 257
            optimizer_sharding = True

W
WangXi 已提交
258 259 260
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
261
        self._optimizer_sharding = optimizer_sharding
262 263

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
264
        self.pp_allreduce_in_optimize = sharding_configs[
265 266
            "pp_allreduce_in_optimize"
        ]
267

268 269 270
    def _inner_opt_minimize(
        self, loss, startup_program, parameter_list, no_grad_set
    ):
W
WangXi 已提交
271 272
        pipeline_configs = self.user_defined_strategy.pipeline_configs

273 274
        if self.inner_opt is None:
            raise ValueError(
275 276
                "self.inner_opt of ShardingOptimizer should not be None."
            )
277 278

        if self.pp_degree > 1:
W
wangxiaoning 已提交
279
            pp_optimizer = PipelineOptimizer(
280 281
                self.inner_opt, self._gradient_merge_acc_step
            )
W
WangXi 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
298
                'scale_gradient': self.scale_gradient,
W
WangXi 已提交
299
            }
300 301
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
302

303 304 305 306 307 308 309 310 311
            (
                optimize_ops,
                params_grads,
                program_list,
                self.pipeline_pair,
                self.pp_ring_map,
            ) = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set
            )
W
WangXi 已提交
312
            assert self.pp_degree == len(program_list)
313 314
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
315 316
                loss, startup_program, parameter_list, no_grad_set
            )
317 318 319

        if startup_program is None:
            startup_program = default_startup_program()
320 321 322

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
323
            print("pp_rank:", self.pp_rank)
L
lilong12 已提交
324
            if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
325 326 327
                main_program = program_list[
                    int(os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))
                ]
L
lilong12 已提交
328 329
            else:
                main_program = program_list[self.pp_rank]
330 331 332 333 334 335 336 337 338 339 340
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

341 342 343 344
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

345 346 347 348 349
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
350
        return optimize_ops, params_grads
351

W
WangXi 已提交
352
    def _apply_sharding_pass(self, params_grads):
353 354
        if self.sharding_degree == 1:
            return
W
WangXi 已提交
355 356 357

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
358

W
WangXi 已提交
359
        # step1: build shard
360 361 362
        self._build_shard(
            params_grads, self.sharding_rank, self.sharding_degree
        )
363

W
WangXi 已提交
364 365
        # step2: split_program
        self._split_program(main_block)
366

W
WangXi 已提交
367 368 369 370
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
371

W
WangXi 已提交
372
        # step4: remove unneeded ops and vars from block
373
        self._prune_main_program(
374 375 376 377
            main_block,
            self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id],
        )
378 379 380
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
381 382 383
        """outer dp as optimizer sharding"""
        if self._optimizer_sharding is False:
            return
384 385 386

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
387

388 389 390 391 392 393 394 395 396
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
397 398 399 400
            main_block,
            self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id],
        )
401 402 403
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
404 405
        if self.pp_degree == 1:
            return
406

W
WangXi 已提交
407
        strategy = self.user_defined_strategy
408
        sharding_configs = strategy.sharding_configs
409

W
WangXi 已提交
410 411 412 413 414 415 416 417 418 419 420 421
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
422 423
                        main_block._remove_op(idx)

W
WangXi 已提交
424
            for idx, op in reversed(list(enumerate(main_block.ops))):
425 426
                if op.type != 'cast':
                    continue
W
WangXi 已提交
427
                in_name = op.input_arg_names[0]
428 429 430
                if in_name not in self._params:
                    continue
                # if self._shard.has_param(param_name): continue
W
WangXi 已提交
431 432 433
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

434 435 436 437 438
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
439
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
440 441
            main_block, strategy=strategy, shard=shard
        )
442 443

        len_of_ops = len(main_block.ops)
444 445
        if self.scale_gradient:
            self._avg_grad_merge_after_sum(main_block, accumulated_grad_names)
446 447
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
448
        if self.pp_allreduce_in_optimize:
449 450 451
            logger.info(
                "Pipeline Persistable grad is {}".format(accumulated_grad_names)
            )
452 453 454 455
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
456 457 458 459 460 461
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
462
                use_calc_stream=True,
463 464
                rank=self.sharding_rank,
            )
465 466

            logger.info("PP-Sharding grad is {}".format(accumulated_grad_names))
467
            first_optimize_op_index += len(main_block.ops) - len_of_ops
468 469
            len_of_ops = len(main_block.ops)

470 471 472 473 474 475 476 477 478 479
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
480 481
                strategy=strategy,
            )
482
            logger.info(
483 484 485
                "Optimizer grad in this rank {}".format(accumulated_grad_names)
            )
            first_optimize_op_index += len(main_block.ops) - len_of_ops
486 487
            len_of_ops = len(main_block.ops)

488 489
            # NOTE(wangxi): we fused after optimize_cast
            optimize_cast = sharding_configs['optimize_cast']
490 491 492
            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
493 494
                self.dp_ring_id,
                [x[0].name for x in params_grads],
495 496 497 498
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
499 500
                strategy=None if optimize_cast else strategy,
            )
501
            logger.info(
502 503
                "Optimizer param in this rank {}".format(optimizer_param)
            )
504
            if not strategy.fuse_grad_merge and not optimize_cast:
505 506
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
507 508 509 510 511 512 513
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
514 515 516
                user_defined_strategy=strategy,
            )
            first_optimize_op_index += len(main_block.ops) - len_of_ops
517 518 519
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
520

521
    def _avg_grad_merge_after_sum(self, main_block, accumulated_grad_names):
522 523 524 525 526 527
        if (
            self.user_defined_strategy.amp
            and self.user_defined_strategy.amp_configs[
                'use_dynamic_loss_scaling'
            ]
        ):
528 529 530 531 532 533 534 535 536 537
            # For AMP, if using dynamic loss scaling the avg
            # operation can be simple done by modify the LossScaling op.
            for idx, op in enumerate(main_block.ops):
                if op.type == 'check_finite_and_unscale':
                    loss_scale_name = op.input('Scale')[0]
                    loss_scaling_var = main_block.var(loss_scale_name)
                    loss_scale_tmp_var_name = loss_scale_name + '@TMP'
                    loss_scale_tmp_var = main_block.create_var(
                        name=loss_scale_tmp_var_name,
                        shape=loss_scaling_var.shape,
538 539
                        dtype=loss_scaling_var.dtype,
                    )
540 541 542 543 544 545 546 547 548
                    main_block._insert_op_without_sync(
                        idx,
                        type='scale',
                        inputs={'X': loss_scaling_var},
                        outputs={'Out': loss_scale_tmp_var},
                        attrs={
                            'scale': self._gradient_merge_acc_step,
                            'bias': 0.0,
                            'bias_after_scale': False,
549 550 551
                            OP_ROLE_KEY: OpRole.Optimize,
                        },
                    )
552 553 554 555 556 557 558 559 560 561
                    op._rename_input(loss_scale_name, loss_scale_tmp_var_name)
                    break
        else:
            # For pp, do the avg operation for gradient merge after merging
            # the gradient to meet the logic for gradient merge under pure dp.
            tmp_first_opt_idx = None
            for idx, op in enumerate(main_block.ops):
                if is_optimizer_op(op) and op.type != 'c_sync_comm_stream':
                    tmp_first_opt_idx = idx
                    break
562 563 564
            assert (
                tmp_first_opt_idx is not None
            ), 'Occurs some errors, no optimize ops'
565 566 567 568 569 570 571 572 573 574
            for grad in accumulated_grad_names:
                main_block._insert_op_without_sync(
                    tmp_first_opt_idx,
                    type='scale',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={
                        'scale': 1.0 / self._gradient_merge_acc_step,
                        'bias': 0.0,
                        'bias_after_scale': False,
575 576 577
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
578

W
WangXi 已提交
579
    def _adapt_amp_clip_without_sharding(self):
580 581
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
582 583 584 585
        if self.sharding_degree > 1:
            return
        if self._optimizer_sharding:
            return
586

W
WangXi 已提交
587 588 589 590
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # amp inf_var & clip global_norm_var
591

592 593 594 595 596
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
        if core.is_compiled_with_npu():
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
597

W
WangXi 已提交
598
        gradientclip_helper = GradientClipHelper(None)
599 600 601
        gradientclip_helper.sync_global_norm(
            main_block, [self.mp_ring_id, self.pp_ring_id], self.mp_rank
        )
W
WangXi 已提交
602 603 604 605 606

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
607 608 609
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
610
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
611

612 613
        main_block._sync_with_cpp()

614
    def _apply_optimize_offload_pass(self, params_grads):
W
WangXi 已提交
615 616 617 618 619
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

620
        mp_ring_id = self.mp_ring_id if self.mp_degree > 1 else None
621
        dp_ring_id = self.dp_ring_id if self.dp_degree > 1 else None
622 623 624
        offload_helper = OffloadHelper(
            mp_ring_id=mp_ring_id, dp_ring_id=dp_ring_id
        )
625

W
WangXi 已提交
626 627 628 629
        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
630
            logger.info("Sharding with optimize offload !")
631
            offload_helper.offload(main_block, startup_block)
632
            # The optimize_cast is already included in offload_fp32param
633
            offload_helper.offload_fp32param(main_block, startup_block)
634 635 636 637
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
638 639
            if self._optimizer_sharding:
                offload_helper.opt_sharding_cast_fp32param(
640 641
                    main_block, startup_block, [x[0].name for x in params_grads]
                )
642
                # NOTE(wangxi): fused after optimize_cast
643 644 645
                utils.fuse_opt_broadcast_param_ops(
                    main_block, dp_ring_id, self._shard, strategy=strategy
                )
646
            else:
647
                offload_helper.cast_fp32param_in_optimize(
648 649
                    main_block, startup_block
                )
650

W
WangXi 已提交
651 652 653
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
654 655 656
        with open(
            "start_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
657
            f.writelines(str(startup_block.program))
658 659 660
        with open(
            "main_sharding_%d" % self.role_maker._worker_index(), 'w'
        ) as f:
W
WangXi 已提交
661 662
            f.writelines(str(main_block.program))

663 664 665
    def minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
W
WangXi 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
680 681
            loss, startup_program, parameter_list, no_grad_set
        )
W
WangXi 已提交
682 683 684 685 686

        self._init_comm()

        self._apply_sharding_pass(params_grads)

687 688 689
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
690 691 692 693 694 695

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

696
        # apply optimize offload or optimize cast
697
        self._apply_optimize_offload_pass(params_grads)
W
WangXi 已提交
698

699
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
700
        self._sharding_gradient_merge()
701 702 703 704 705 706

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
707

W
WangXi 已提交
708 709 710
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
711

712 713 714 715
        # NOTE(wangxi): if param is not persistable, program.clone will
        #  failed, so we remove no persistable param, recreate param as a var
        self._recreate_not_persist_param_as_var()

W
WangXi 已提交
716
        self._dump_program_for_debug()
717

718 719 720
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
721 722
        return optimize_ops, params_grads

723 724 725 726 727 728
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
L
lilong12 已提交
729
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
730 731 732 733 734 735 736 737 738
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                pp_group_endpoints,
                pp_rank,
                ring_id,
                False,
                sync=False,
            )
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
756 757 758 759
        send_to_next_pair = (
            self.pp_rank,
            (self.pp_rank + 1) % self.pp_degree,
        )  # 2->3
760
        recv_from_next_pair = (
761 762 763
            (self.pp_rank + 1) % self.pp_degree,
            self.pp_rank,
        )  # 3->2
764
        recv_from_prev_pair = (
765 766
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
            self.pp_rank,
767
        )  # 1->2
768 769 770 771
        send_to_prev_pair = (
            self.pp_rank,
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree,
        )  # 2->1
772 773 774 775 776 777 778 779

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
780 781 782
        logger.info(
            "pair0(even->odd): pp pair:{}, ring_id: {}".format(pair, ring_id)
        )
783 784 785 786 787 788

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
789 790 791
        logger.info(
            "pair1(even<-odd): pp pair:{}, ring_id: {}".format(pair, ring_id)
        )
792 793 794 795 796

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
797 798 799
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 1
            )  # 3->0 not in pp_ring_map
800 801 802
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
803 804 805 806 807
            logger.info(
                "pair2(odd->even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
808 809 810

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
811 812 813
            ring_id = self.pp_ring_map.get(
                pair[0] * 1000 + pair[1], max_ring_id + 2
            )  # 0->3 not in pp_ring_map
814 815 816
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
817 818 819 820 821
            logger.info(
                "pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                    pair, ring_id
                )
            )
822

823 824 825 826
        assert len(my_pair) == 0, (
            "Current pipeline does not support cross stage communication, "
            "please check unexpected pair {}".format(my_pair)
        )
827 828 829

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
L
lilong12 已提交
830
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
831 832 833 834 835 836 837 838 839
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.pp_group_endpoints,
                self.pp_rank,
                self.pp_ring_id,
                False,
                sync=False,
            )
840

841 842 843 844 845 846 847 848 849 850 851 852
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

853
    def _init_comm(self):
854
        # sync var
855 856
        startup_block = self._startup_program.global_block()

857
        # mp ring
858
        if self.mp_degree > 1:
859 860 861 862 863 864 865 866 867
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.mp_group_endpoints,
                self.mp_rank,
                self.mp_ring_id,
                False,
                sync=False,
            )
868

869
        # sharding ring
870 871 872 873 874 875 876 877
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
878 879
                sync=False,
            )
880

881 882
        # pp ring
        if self.pp_degree > 1:
883
            self._init_pipeline_comm(startup_block)
884 885

        # pure dp ring
886
        if self.dp_degree > 1:
887 888 889 890 891 892 893 894 895
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.dp_group_endpoints,
                self.dp_rank,
                self.dp_ring_id,
                False,
                sync=False,
            )
896

897 898
        startup_block._sync_with_cpp()

899
    def _build_shard(self, params_grads, shard_rank, shard_size):
900 901
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
902
        self._shard.setup(params_grads, shard_rank, shard_size)
903 904 905

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
906 907
            self._main_program.global_block()
        )
908

909 910 911
    def _wait(
        self,
    ):
912 913 914
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
915 916
            self._collective_helper._wait(current_endpoint, endpoints)

917 918 919 920 921 922 923 924
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

925 926 927 928 929
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
930 931

        var2broadcast_time = dict()
932 933 934 935
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
936
            assert int(op.attr('op_role')) != int(OpRole.Optimize)
937 938 939 940 941 942 943 944 945 946 947 948 949
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
950 951 952
                                input_name = input_name[
                                    : input_name.find(".cast_fp16@GRAD")
                                ]
953 954

                        if input_name in self._backward_remain_anchors:
955
                            segment = self.collect_segment(
956 957 958 959 960 961 962
                                segment, op_idx, block
                            )
                            assert (
                                input_name not in self._forward_remain_anchors
                            ), "segment anchor [{}] met twice !".format(
                                input_name
                            )
963 964 965 966 967
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
968
                            segment = self.collect_segment(
969 970
                                segment, op_idx, block
                            )
971
                            self._forward_remain_anchors.remove(output_name)
972 973 974 975 976 977 978 979 980 981 982 983 984 985

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
986 987 988
                    broadcast_var_name = unique_name.generate(
                        input_name + "@BroadCast"
                    )
989
                    segment._fill_constant_vars.append(broadcast_var_name)
990 991 992 993 994

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
995 996 997
                    broadcast_var_base_name = broadcast_var_base_name[
                        : broadcast_var_base_name.find(".subprog")
                    ]
998

999 1000 1001
                var2broadcast_time[broadcast_var_base_name] = (
                    var2broadcast_time.get(broadcast_var_base_name, 0) + 1
                )
1002

1003
                segment._param2broadcast[input_name] = broadcast_var_name
1004
                segment._broadcast_vars.append(
1005 1006
                    (broadcast_var_name, self._shard.device(input_name))
                )
1007
                segment._param_mem += get_var_size(
1008 1009
                    self._main_program.global_block().var(input_name)
                )
1010 1011

            # find reduce vars
1012 1013 1014 1015
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
1016
                if is_backward_op(op) and OP_ROLE_VAR_KEY in op.attr_names:
1017 1018 1019 1020
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
1021 1022 1023 1024
                            param, reduced_grad = (
                                op_role_var[i],
                                op_role_var[i + 1],
                            )
1025
                            segment._allreduce_vars.append(reduced_grad)
1026 1027 1028
                            assert (
                                reduced_grad not in self._reduced_grads_to_param
                            )
1029
                            self._reduced_grads_to_param[reduced_grad] = param
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
1041 1042

        if self._sharding_segment_strategy == "segment_anchors":
1043 1044 1045 1046 1047 1048
            assert (
                len(self._forward_remain_anchors) == 0
            ), "remain anchors {}".format(self._forward_remain_anchors)
            assert (
                len(self._backward_remain_anchors) == 0
            ), "remain anchors {}".format(self._backward_remain_anchors)
1049 1050

        if self._verbose:
1051 1052 1053 1054 1055 1056 1057 1058
            for varname in sorted(
                var2broadcast_time, key=var2broadcast_time.get, reverse=True
            ):
                logger.info(
                    "Sharding broadcast: [{}] times [{}]".format(
                        var2broadcast_time[varname], varname
                    )
                )
1059
            for idx_ in range(len(self._segments)):
1060
                logger.info("segment [{}] :".format(idx_))
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
                logger.info(
                    "start op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._start_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._start_idx
                        ].desc.input_arg_names(),
                    )
                )
                logger.info(
                    "end   op: [{}]  [{}]".format(
                        block.ops[self._segments[idx_]._end_idx].desc.type(),
                        block.ops[
                            self._segments[idx_]._end_idx
                        ].desc.input_arg_names(),
                    )
                )
1077 1078
        return

1079
    def _prune_main_program(self, block, shard, rings):
1080 1081 1082
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
1083 1084 1085 1086 1087

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
1088

1089 1090
        """
        weightdecay_helper = WeightDecayHelper()
1091
        weightdecay_helper.prune_weight_decay(block, shard)
1092 1093

        # FIXME(wangxi): mp should prune duplicated param_grads
1094 1095 1096
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
1097
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
1098

1099
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
1100
        gradientclip_helper = GradientClipHelper(None)
1101
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
1102 1103 1104 1105 1106 1107

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
1108
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
1109 1110 1111 1112 1113
            if (
                op.type == "c_allreduce_sum"
                and op.attr('use_model_parallel') is False
            ):
                assert len(output_names) == 1
1114 1115 1116
                output_name = output_names[0]
                reduced_grads.append(output_name)

1117
        # prune optimizer state and param
1118 1119
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
1120
            if shard.is_opti_var(var_name) and not shard.has_opt_var(var_name):
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
1131 1132 1133 1134 1135 1136 1137
                "c_allreduce_sum",
                "c_sync_comm_stream",
                "c_calc_comm_stream",
                "c_gen_nccl_id",
                "c_comm_init",
                'send_v2',
                'recv_v2',
1138 1139 1140
            ]:
                pass
            elif op.type == "conditional_block":
1141
                assert op.desc.has_attr("sub_block")
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
1157 1158
                    list(enumerate(subblock_deps._block.ops))
                ):
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
1170 1171
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
1172
                if program_deps.should_remove_op(idx):
1173
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
1174 1175 1176
                    reserved_vars = (
                        self._params if self._optimizer_sharding else None
                    )
1177
                    program_deps.remove_op(idx, reserved_vars)
1178

1179
        # NOTE (JZ-LIANG) revise and unify logic here
1180
        # sharding support fp16_allreduce logic
1181 1182 1183 1184 1185 1186
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
1187 1188
                    if block.has_var(var_name):
                        reserved_x.append(var_name)
1189
                op.desc.set_input('X', reserved_x)
1190 1191 1192 1193 1194
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
1195 1196
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
1197

1198
        if combined with pipeline(grad accumulate),
1199
        the grad allreduce should be done in optimize role
1200 1201 1202
        """
        if len(self._segments) < 1:
            return
1203
        # sharding
1204 1205 1206 1207 1208 1209 1210
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
1211 1212 1213 1214 1215
        for idx in range(
            self._segments[-1]._end_idx - 1,
            self._segments[-1]._start_idx - 1,
            -1,
        ):
1216 1217
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
1218 1219
                if "MERGED" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1220
            elif op.type == "cast":
1221 1222
                if "@TMP" in op.output_arg_names[0]:
                    new_end_idx = idx + 1
1223 1224
        self._segments[-1]._end_idx = new_end_idx

1225
        if self._segments[-1]._allreduce_vars:
1226
            shard_allredue_vars = self._shard.filter_grads(
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
                self._segments[-1]._allreduce_vars
            )
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1244 1245 1246 1247 1248
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1249 1250
                        user_defined_strategy=self.user_defined_strategy,
                    )
1251
            # gradient merge
1252 1253 1254 1255
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1256
                self.create_persistable_gradients_and_insert_merge_ops(
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
                    block,
                    self._startup_program.global_block(),
                    self._segments[-1]._end_idx,
                    shard_allredue_vars,
                    self._shard,
                )

            insert_sync_comm_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
            )
1270
            # allreduce --> reduce
1271 1272 1273 1274 1275 1276 1277 1278 1279
            insert_reduce_ops(
                block,
                self._segments[-1]._end_idx,
                self.sharding_ring_id,
                self._segments[-1]._allreduce_vars,
                self._shard,
                op_role=OpRole.Backward,
                use_calc_stream=False,
            )
1280 1281

        for idx, segment in reversed(list(enumerate(self._segments))):
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
            allreduce_vars = (
                self._segments[idx - 1]._allreduce_vars if idx > 0 else []
            )
            broadcast_vars = (
                self._segments[idx + 1]._broadcast_vars
                if idx < len(self._segments) - 1
                else []
            )
            fill_constant_vars = (
                self._segments[idx + 2]._fill_constant_vars
                if idx < len(self._segments) - 2
                else []
            )
            cast_ops = (
                self._segments[idx + 2]._cast_ops
                if idx < len(self._segments) - 2
                else {}
            )
1300 1301 1302 1303

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
1304 1305 1306 1307 1308 1309 1310
                    if (
                        input_name in segment._param2broadcast
                        and input_name != segment._param2broadcast[input_name]
                    ):
                        op._rename_input(
                            input_name, segment._param2broadcast[input_name]
                        )
1311 1312 1313 1314 1315

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
1316 1317 1318 1319 1320 1321 1322 1323
                        shape=self._main_program.global_block()
                        .var(param_name)
                        .shape,
                        dtype=self._main_program.global_block()
                        .var(param_name)
                        .dtype,
                        persistable=False,
                    )
1324 1325 1326

            # step1: remove cast ops
            block._sync_with_cpp()
1327
            segment._end_idx += FP16Utils.remove_cast_op(
1328 1329
                block, self._params, segment, 0
            )
1330 1331

            # step2: add Sync ops
1332 1333
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                    )
1349 1350 1351

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
1352 1353 1354 1355 1356 1357
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            broad_cast_vars,
                        )
1358 1359 1360 1361 1362
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
1363 1364 1365 1366 1367 1368
                        insert_sync_comm_ops(
                            block,
                            segment._end_idx,
                            self.sharding_ring_id,
                            comm_dep_vars,
                        )
1369
            # gradient merge
1370 1371 1372 1373
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1374 1375
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
1376 1377 1378 1379 1380 1381
                    insert_sync_comm_ops(
                        block,
                        segment._end_idx,
                        self.sharding_ring_id,
                        broad_cast_vars,
                    )
1382

1383 1384 1385 1386 1387
            calc_dep_vars = (
                fill_constant_vars
                + [k for k, v in cast_ops.items()]
                + self._segments[idx]._allreduce_vars
            )
1388 1389

            if len(calc_dep_vars) > 0:
1390 1391 1392
                insert_sync_calc_op(
                    block, segment._end_idx, [calc_dep_vars[-1]]
                )
1393

1394
            # step3: insert `fill_constant` ops
1395 1396 1397
            insert_fill_constant_ops(
                block, segment._end_idx, fill_constant_vars
            )
1398

1399
            # step4: add `cast` ops
1400 1401 1402
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1403
            # gradient merge
1404 1405 1406 1407
            if (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
1408
                self.create_persistable_gradients_and_insert_merge_ops(
1409 1410 1411 1412 1413 1414
                    block,
                    self._startup_program.global_block(),
                    segment._start_idx,
                    shard_allredue_vars,
                    self._shard,
                )
1415

1416 1417 1418
            insert_broadcast_ops(
                block, segment._start_idx, self.sharding_ring_id, broadcast_vars
            )
1419

1420
            # step6: add all_reduce ops
1421
            # dp
1422 1423 1424 1425 1426 1427 1428 1429 1430
            if (
                self.gradient_merge_mode != "sharding_gm"
                or self._gradient_merge_acc_step <= 1
            ):
                if (
                    self.hybrid_dp
                    and self.hybrid_dp_mode == "sharding_hybrid_dp"
                    and len(shard_allredue_vars) >= 1
                ):
1431 1432 1433 1434 1435
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
1436 1437 1438 1439 1440 1441 1442 1443
                        user_defined_strategy=self.user_defined_strategy,
                    )
                    insert_sync_comm_ops(
                        block,
                        segment._start_idx,
                        self.sharding_ring_id,
                        allreduce_vars,
                    )
1444
            # gradient merge
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
            elif (
                self.gradient_merge_mode == "sharding_gm"
                and self._gradient_merge_acc_step > 1
            ):
                insert_sync_comm_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                )
1455
            # sharding
1456
            # allreduce --> reduce
1457 1458
            # TODO temp change
            if len(allreduce_vars) > 0:
1459 1460 1461 1462 1463 1464 1465 1466 1467
                insert_reduce_ops(
                    block,
                    segment._start_idx,
                    self.sharding_ring_id,
                    allreduce_vars,
                    self._shard,
                    op_role=OpRole.Backward,
                    use_calc_stream=False,
                )
1468 1469 1470 1471

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1472
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
            insert_sync_comm_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                broadcast_vars,
            )
            insert_broadcast_ops(
                block,
                self._segments[0]._start_idx,
                self.sharding_ring_id,
                self._segments[0]._broadcast_vars,
            )
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
1498 1499 1500
            insert_sync_calc_op(
                block, self._segments[0]._start_idx, [calc_deps_vars[-1]]
            )
1501 1502

        if fill_constant_vars:
1503 1504 1505
            insert_fill_constant_ops(
                block, self._segments[0]._start_idx, fill_constant_vars
            )
1506 1507 1508 1509 1510 1511

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1512
    def _prune_startup_program(self, block, shard):
1513 1514
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1515 1516 1517
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1518
                    continue
1519
                # TODO why do we remove op, when only one var is removed
1520 1521 1522 1523
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1524 1525 1526
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1527 1528 1529
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1530

1531
    def _build_groups(self):
1532 1533
        """
        pre-assign ring ids
1534 1535 1536 1537
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1538 1539
            pp: 4
            pp-pair: >= 20
1540
        if one parallelism is not enable: -1
1541
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp
1542 1543 1544 1545 1546 1547
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
        self._collective_helper = CollectiveHelper(
            self.role_maker, nrings=self._nrings_sharding
        )
        assert (
            self.global_word_size % self.mp_degree == 0
        ), "global_word_size: {} should be divisible to the mp_degree: {}".format(
            self.global_word_size, self.mp_degree
        )
        assert (
            self.global_word_size % self.sharding_degree == 0
        ), "global_word_size: {} should be divisible to the sharding_degree: {}".format(
            self.global_word_size, self.sharding_degree
        )
        assert (
            self.global_word_size % self.pp_degree == 0
        ), "global_word_size: {} should be divisible to the pp_degree: {}".format(
            self.global_word_size, self.pp_degree
        )
        assert (
            self.global_word_size % self.dp_degree == 0
        ), "global_word_size: {} should be divisible to the dp_degree: {}".format(
            self.global_word_size, self.dp_degree
        )
1571 1572 1573 1574 1575 1576 1577

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
1578 1579
                ep
                for idx, ep in enumerate(self.global_endpoints)
1580
                if idx // self.mp_degree == self.mp_group_id
1581
            ]
1582
            assert self.current_endpoint in self.mp_group_endpoints
1583 1584 1585 1586 1587
            assert (
                len(self.mp_group_endpoints) == self.mp_degree
            ), "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree
            )
1588 1589 1590 1591 1592 1593 1594
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

1595
        # sharding
1596 1597
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
1598 1599 1600 1601 1602 1603
            self.sharding_rank = (
                self.global_rank // self.mp_degree
            ) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree
            )
1604 1605 1606
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
1607 1608 1609 1610 1611
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
                    and idx % self.mp_degree == self.mp_rank
1612
                ]
1613
            # sharding + ...
1614 1615
            else:
                self.sharding_group_endpoints = [
1616 1617 1618 1619
                    ep
                    for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree))
                    == self.sharding_group_id
1620 1621 1622 1623 1624 1625 1626 1627 1628
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1629 1630
        # pp
        if self.pp_degree > 1:
1631 1632 1633
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1634 1635 1636 1637 1638
            self.pp_rank = (
                self.global_rank
                // (self.sharding_degree * self.mp_degree)
                % self.pp_degree
            )
1639 1640
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
1641 1642
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1643
            pp_first_stage_idx = self.global_rank % (
1644 1645 1646 1647
                self.sharding_degree * self.mp_degree
            ) + self.pp_group_id * (
                self.mp_degree * self.sharding_degree * self.pp_degree
            )
1648 1649 1650
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
1651
                self.pp_group_endpoints.append(
1652 1653 1654 1655
                    self.global_endpoints[
                        pp_first_stage_idx + pp_stage_offset * i
                    ]
                )
1656 1657 1658
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1659 1660
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1661 1662 1663 1664
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1665 1666 1667
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
1668
        # sharding-hybrid-dp as one senario of outter-pure-dp
L
lilong12 已提交
1669 1670
        local_pp_degree = self.pp_degree
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
            assert self.pp_degree == 2, (
                "For manually set pipeline, only " "pp_degree = 2 is supported."
            )
            assert (
                self.global_word_size
                == self.mp_degree * self.sharding_degree * self.dp_degree
            ), "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                self.global_word_size,
                self.mp_degree,
                self.sharding_degree,
                self.dp_degree,
            )
L
lilong12 已提交
1683 1684
            local_pp_degree = 1
        else:
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
            assert (
                self.global_word_size
                == self.mp_degree
                * self.sharding_degree
                * self.pp_degree
                * self.dp_degree
            ), "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
                self.mp_degree,
                self.sharding_degree,
                self.pp_degree,
                self.dp_degree,
                self.global_word_size,
            )
1698

1699 1700
        if self.dp_degree > 1:
            self.dp_ring_id = 2
L
lilong12 已提交
1701
            self.dp_rank = self.global_rank // (
1702 1703
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
1704
            dp_first_rank_idx = self.global_rank % (
1705 1706 1707
                self.sharding_degree * self.mp_degree * local_pp_degree
            )
            dp_offset = self.sharding_degree * self.mp_degree * local_pp_degree
1708 1709
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
1710
                self.dp_group_endpoints.append(
1711 1712
                    self.global_endpoints[dp_first_rank_idx + dp_offset * i]
                )
1713
            assert self.current_endpoint in self.dp_group_endpoints
1714
            logger.info("Hybrid DP mode turn on !")
1715 1716 1717
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1718
            self.dp_group_endpoints = []
1719

1720
        # global group
1721 1722
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1723
        self.global_ring_id = 3
1724

1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
1741 1742 1743
        logger.info(
            "sharding group endpoints: {}".format(self.sharding_group_endpoints)
        )
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
1756 1757 1758
        logger.info(
            "pure dp group endpoints: {}".format(self.dp_group_endpoints)
        )
1759 1760
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1761 1762

        return
1763

1764 1765 1766 1767 1768 1769 1770
    def _recreate_not_persist_param_as_var(self):
        def recreate_not_persist_param_as_var(program):
            block = program.global_block()
            params = block.all_parameters()
            for param in params:
                if param.persistable:
                    continue
1771

1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
                name = param.name
                shape = param.shape
                dtype = param.dtype
                type = param.type
                lod_level = param.lod_level
                stop_gradient = param.stop_gradient
                trainable = param.trainable
                optimize_attr = param.optimize_attr
                regularizer = param.regularizer
                have_dist_attr = False
                is_distributed = False
                if hasattr(param, 'is_distributed'):
                    have_dist_attr = True
                    is_distributed = param.is_distributed

1787
                block._remove_var(name, sync=False)
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
                var = block.create_var(
                    name=name,
                    shape=shape,
                    dtype=dtype,
                    type=type,
                    lod_level=lod_level,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    persistable=False,
                )
1798 1799 1800
                if have_dist_attr:
                    var.is_distributed = is_distributed

1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            block._sync_with_cpp()

        recreate_not_persist_param_as_var(self._startup_program)
        recreate_not_persist_param_as_var(self._main_program)

    def _initialization_broadcast(self):
        """
        this funtion is to ensure the initialization between dp group to be
        identical when hybrid-dp is used, and the initialization of
        not distributed param between mp group to be identical.
        """
        if self.dp_degree <= 1 and self.mp_degree <= 1:
            return

        startup_block = self._startup_program.global_block()

        params = startup_block.all_parameters()
        params_name = []
        not_dist_param_name = set()

        for param in params:
            params_name.append(param.name)
            if not hasattr(param, 'is_distributed') or not param.is_distributed:
                not_dist_param_name.add(param.name)

1826 1827 1828 1829 1830 1831 1832
        # offload and optimize_cast will insert broadcast op
        broadcast_params = set()
        for op in startup_block.ops:
            if op.type == 'c_broadcast':
                broadcast_params.add(op.desc.output_arg_names()[0])

        for param in params_name:
1833 1834
            if param in broadcast_params:
                continue
1835 1836 1837 1838 1839 1840 1841 1842 1843

            rings = []
            # need sync not distributed param in mp group
            if self.mp_degree > 1 and param in not_dist_param_name:
                rings.append(self.mp_ring_id)
            if self.dp_degree > 1:
                rings.append(self.dp_ring_id)

            for ring in rings:
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
                startup_block.append_op(
                    type='c_broadcast',
                    inputs={'X': param},
                    outputs={'Out': param},
                    attrs={
                        'ring_id': ring,
                        'root': 0,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Forward,
                    },
                )
1855

1856 1857
        startup_block._sync_with_cpp()

1858 1859
    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
1860 1861
        self, main_block, startup_block, insert_idx, grad_names, shard
    ):
1862 1863

        for grad_name in grad_names:
1864 1865 1866 1867 1868
            assert (
                get_grad_device(grad_name, shard) == shard.worker_idx
            ), "try to merge gradient not belong to current shard: [{}]".format(
                grad_name
            )
1869
            persistable_grad_name = grad_name + '@GradiantMerge'
1870 1871 1872 1873 1874
            assert (
                grad_name not in self._grad2merged_grad
            ), "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name
            )
1875 1876 1877 1878 1879 1880 1881
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1882 1883
                persistable=True,
            )
1884 1885 1886 1887
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
1888 1889
                persistable=True,
            )
1890 1891 1892 1893 1894

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
1895
                inputs={'X': grad_name, 'Y': gradient_merge_var},
1896 1897 1898 1899
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
1900 1901 1902
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
1903 1904

            # startup initialization
1905 1906 1907 1908 1909 1910 1911 1912 1913
            startup_block.append_op(
                type="fill_constant",
                outputs={"Out": startup_gradient_merge_var},
                attrs={
                    "shape": grad_var.shape,
                    "dtype": grad_var.dtype,
                    "value": float(0),
                },
            )
1914 1915 1916 1917 1918 1919

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
W
wangxiaoning 已提交
1920
        acc_step_var = create_global_var(
1921 1922 1923 1924 1925
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
1926 1927
            force_cpu=True,
        )
1928

W
wangxiaoning 已提交
1929
        zero_var = create_global_var(
1930 1931 1932 1933 1934 1935 1936
            name="gradient_merge_zero",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True,
        )
1937 1938

        # Add step var & cond var
W
wangxiaoning 已提交
1939
        current_step_var = create_global_var(
1940 1941 1942 1943 1944
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
1945 1946
            force_cpu=True,
        )
1947

1948 1949 1950
        cond_var = main_block.create_var(
            name="gradient_merge_cond", shape=[1], dtype='bool'
        )
1951 1952 1953

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
            main_block.append_op(
                type='increment',
                inputs={'X': [current_step_var]},
                outputs={'Out': [current_step_var]},
                attrs={'step': float(1), OP_ROLE_KEY: OpRole.Optimize},
            )

            main_block.append_op(
                type='elementwise_mod',
                inputs={'X': current_step_var, 'Y': acc_step_var},
                outputs={'Out': current_step_var},
                attrs={
                    'axis': -1,
                    OP_ROLE_KEY: OpRole.Optimize,
                    'use_mkldnn': False,
                },
            )
1971 1972

            # cond_var = (step_var == 0)
1973 1974 1975 1976 1977 1978
            main_block.append_op(
                type='equal',
                inputs={'X': current_step_var, 'Y': zero_var},
                outputs={'Out': cond_var},
                attrs={OP_ROLE_KEY: OpRole.Optimize},
            )
1979 1980 1981 1982 1983 1984 1985 1986 1987
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
1988
            amp
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

2003
        # allreduce grad@gradientmerge
2004
        if self.hybrid_dp:
2005 2006 2007
            assert (
                self.dp_ring_id >= 0
            ), "dp_ring_id should larger than 0 when in sharding&DP mode"
2008 2009
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
                cur_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': merged_grad_var},
                    outputs={'Out': merged_grad_var},
                    attrs={
                        'ring_id': self.dp_ring_id,
                        'use_calc_stream': True,
                        OP_ROLE_KEY: OpRole.Optimize,
                    },
                )
2020 2021 2022 2023 2024

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
            cur_block.append_op(
                type='scale',
                inputs={'X': merged_grad_var},
                outputs={'Out': merged_grad_var},
                attrs={
                    'scale': 1.0 / float(self._gradient_merge_acc_step),
                    'bias': 0.0,
                    'bias_after_scale': False,
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
2046 2047
                        input_name, self._grad2merged_grad[input_name]
                    )
2048 2049 2050 2051

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
2052 2053
                        output_name, self._grad2merged_grad[output_name]
                    )
2054 2055

                # move non temp optimize vars from block0 to cond block
2056 2057 2058
                if (
                    output_name not in already_moved_var_names
                    and output_name not in self._grad2merged_grad.keys()
2059 2060 2061 2062 2063 2064 2065 2066
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
2067 2068 2069 2070 2071 2072 2073 2074
                            var_.name, sync=False
                        )
                        self.cond_block.create_var(
                            name=name_,
                            shape=shape_,
                            dtype=type_,
                            persistable=False,
                        )
2075 2076 2077 2078 2079 2080 2081 2082
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
            cur_block.append_op(
                type='fill_constant',
                outputs={'Out': merged_grad_var},
                attrs={
                    "shape": merged_grad_var.shape,
                    "dtype": merged_grad_var.dtype,
                    "value": float(0),
                    OP_ROLE_KEY: OpRole.Optimize,
                },
            )
2093 2094 2095 2096

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
2097
    def _sharding_gradient_merge(self):
2098 2099 2100 2101 2102 2103
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
2104 2105 2106 2107
        if (
            self.gradient_merge_mode != "sharding_gm"
            or self._gradient_merge_acc_step <= 1
        ):
W
WangXi 已提交
2108 2109 2110
            return

        main_block = self._main_program.global_block()
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
2126 2127
            reversed(self.original_optimize_ops_desc)
        )
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
2144 2145
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2146 2147 2148 2149 2150 2151
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
2152
            outputs={'Out': [], 'Scope': [step_scope]},
2153 2154 2155
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
2156 2157
            },
        )