sharding_optimizer.py 81.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
16 17
from paddle.fluid import unique_name, core
import paddle.fluid as fluid
18
from paddle.static import default_startup_program, device_guard
19 20
from paddle.fluid import layers

21
from .common import OpRole, OP_ROLE_VAR_KEY, CollectiveHelper, OP_ROLE_KEY
22 23 24 25 26 27 28 29 30 31 32 33
from .common import is_backward_op, is_optimizer_op, is_update_op
from .meta_optimizer_base import MetaOptimizerBase
from .sharding.shard import Shard, ProgramSegment
from .sharding.fp16_helper import FP16Utils
from .sharding.weight_decay_helper import WeightDecayHelper
from .sharding.gradient_clip_helper import GradientClipHelper
from .sharding.offload_helper import OffloadHelper
from .sharding.prune import ProgramDeps
from .sharding import utils
# FIXME: import *
from .sharding.utils import *

34
import logging
35

36
logger = logging.getLogger(__name__)
37 38
formatter = logging.Formatter(fmt='%(asctime)s %(levelname)-8s %(message)s',
                              datefmt='%Y-%m-%d %H:%M:%S')
39 40 41
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logger.addHandler(ch)
42

43
__all__ = []
44 45 46


class ShardingOptimizer(MetaOptimizerBase):
47 48
    """Sharding Optimizer."""

49 50 51 52 53 54
    def __init__(self, optimizer):
        super(ShardingOptimizer, self).__init__(optimizer)
        self.inner_opt = optimizer
        self.meta_optimizers_white_list = [
            "RecomputeOptimizer",
            "AMPOptimizer",
55 56
            "LarsOptimizer",
            "LambOptimizer",
M
minghaoBD 已提交
57
            "ASPOptimizer",
58 59
            # "ModelParallelOptimizer",
            # "PipelineOptimizer",
60
        ]
61 62 63
        self.meta_optimizers_black_list = [
            "GraphExecutionOptimizer",
        ]
64 65 66 67 68 69 70 71 72
        self._main_program = None
        self._startup_program = None
        self._segments = []
        # params and fp16 params is for broadcast
        self._params = set([])
        self._broadcast_vars = set([])
        # reduced grads to param name
        self._reduced_grads_to_param = {}
        self._shard = Shard()
73 74 75 76
        self._verbose = False

        # use sharding as outer parallelism (e.g. inner:Megatron & outer sharding)
        self.mp_degree = 1
77 78 79 80 81 82 83 84 85 86 87 88 89 90

    def _can_apply(self):
        if not self.role_maker._is_collective:
            return False
        if self.role_maker._worker_num() <= 1:
            return False
        return self.user_defined_strategy.sharding

    def _disable_strategy(self, dist_strategy):
        dist_strategy.sharding = False
        dist_strategy.sharding_configs = {}

    def _enable_strategy(self, dist_strategy, context):
        dist_strategy.sharding = True
91
        dist_strategy.sharding_configs = {"segment_broadcast_MB": 32}
92

W
WangXi 已提交
93 94 95 96 97 98 99 100 101 102 103
    def _get_sharding_segment_strategy(self):
        """ get
        self._sharding_segment_strategy
        1. if by_size:    self._broadcast_MB
        2. if by_anchors: self._sharding_segment_anchors
                          self._backward_remain_anchors
                          self._forward_remain_anchors
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        segment_strategy = str(sharding_configs["sharding_segment_strategy"])
104

W
WangXi 已提交
105 106
        if segment_strategy == "segment_broadcast_MB":
            self._broadcast_MB = sharding_configs["segment_broadcast_MB"]
107
            assert self._broadcast_MB > 0, "segment size should larger than zero !"
W
WangXi 已提交
108 109
        elif segment_strategy == "segment_anchors":
            self._sharding_segment_anchors = sharding_configs["segment_anchors"]
110 111 112 113 114 115 116
            assert len(self._sharding_segment_anchors
                       ) > 0, "you should set the sharding segment anchors !"
            self._backward_remain_anchors = self._sharding_segment_anchors[:]
            self._forward_remain_anchors = []
        else:
            raise NotImplementedError(
                "the sharding segment strategy [{}] is not implemented".format(
W
WangXi 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129
                    str(segment_strategy)))
        self._sharding_segment_strategy = segment_strategy

    def _get_hybrid_degree(self):
        """ get
        self.hybrid_dp
        self.sharding_degree
        self.mp_degree
        self.pp_degree
        self.dp_degree
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
130

131
        # parallelism
W
WangXi 已提交
132 133 134 135 136 137 138
        sharding_degree = int(sharding_configs["sharding_degree"])
        mp_degree = int(sharding_configs["mp_degree"])
        pp_degree = int(sharding_configs["pp_degree"])
        dp_degree = int(sharding_configs['dp_degree'])
        global_world_size = self.role_maker._worker_num()

        assert sharding_degree > 0, "sharding degree must be larger than zero"
139 140
        # pipeline setting
        # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
W
WangXi 已提交
141 142 143
        if pp_degree > 1:
            assert strategy.pipeline is True

L
lilong12 已提交
144 145 146 147 148 149 150 151 152 153
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            assert pp_degree == 2, ("For manually set pipeline, only "
                                    "pp_degree = 2 is supported.")
            assert global_world_size == mp_degree * sharding_degree * dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                    global_world_size, mp_degree, sharding_degree, dp_degree)
        else:
            assert global_world_size == mp_degree * sharding_degree * pp_degree * dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], pp_degree [{}], dp_degree [{}].".format(
                    global_world_size, mp_degree, sharding_degree, pp_degree, dp_degree)
154

J
JZ-LIANG 已提交
155
        # FIXME (JZ-LIANG) deprecated hybrid_dp
W
WangXi 已提交
156
        if sharding_configs["hybrid_dp"]:
157
            logger.warning(
W
WangXi 已提交
158 159 160 161 162 163 164 165 166 167 168 169
                "[hybrid_dp] API setting is deprecated. Now when "
                "dp_degree >= 2, its will be in hybrid dp mode automatically")
            assert dp_degree >= 1

        self.hybrid_dp = True if dp_degree > 1 else False
        self.sharding_degree = sharding_degree
        self.mp_degree = mp_degree
        self.pp_degree = pp_degree
        self.dp_degree = dp_degree

    def _get_hybrid_dp_mode(self):
        """ get
170 171
        self.hybrid_dp_mode = 'pp_hybrid_dp' or 'sharding_hybrid_dp'
        self.gradient_merge_mode = 'pp_gm' or 'sharding_gm'
W
WangXi 已提交
172 173
        self._gradient_merge_acc_step
        self.pp_allreduce_in_optimize
174
        self._optimizer_sharding
W
WangXi 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
        """
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs

        # NOTE (JZ-LIANG)
        # There 2 kind of modes for gradient-merge and hybrid-dp in mixed parallelism [sharding] and [pipeline].
        # We distinguish this two modes since the gm/hybrid-dp related allreduce should be insert in different place
        # according different mode to have best performance:
        # sharding: communication within node, and therefore should insert within backward segment
        #           to overlap with bw calc, conduct every micro step.
        # pipeline: communication across nodes, and therefore should insert in update segment,
        #           conduct just once per global step.
        dp_mode = None
188 189 190
        # dp here is the pure dp as the outest parallelism
        if self.hybrid_dp:
            if self.pp_degree > 1:
W
WangXi 已提交
191
                dp_mode = "pp_hybrid_dp"
192
            else:
W
WangXi 已提交
193 194 195 196
                assert self.sharding_degree > 1, \
                    "by now we only support five kind of hybrid dp: sharding_hybrid_dp, " \
                    "mp_sharding_hybrid_dp, pp_hybrid_dp, mp_sharding_pp_hybrid_dp, sharding_pp_hybrid_dp."
                dp_mode = "sharding_hybrid_dp"
197

198
        # gradient merge
W
WangXi 已提交
199 200
        gm_mode = None
        gm_acc_step = int(sharding_configs["gradient_merge_acc_step"])
201
        if self.pp_degree <= 1:
W
WangXi 已提交
202
            gm_mode = "sharding_gm"
203 204
            self._grad2merged_grad = dict()
        else:
W
WangXi 已提交
205 206
            gm_mode = "pp_gm"
            gm_acc_step = strategy.pipeline_configs['accumulate_steps']
207 208 209 210 211 212 213 214
            gradient_scale_configs = strategy.gradient_scale_configs
            assert gradient_scale_configs['scale_strategy'] == 'avg', \
                'For pipeline mode, the ' 'gradient scale mode should ' \
                'be "avg", but got {}'.format(gradient_scale_configs['scale_strategy'])
            # Note (Yuang Liu): this avg_loss flag determines where to do the average op for grad merge.
            # If True, will do sum firstly for gradient merge, then do scale by gm_acc_step.
            # If False, will scale loss by gm_acc_step first, then do sum for gradient merge.
            self.scale_gradient = gradient_scale_configs['scale_gradient']
W
WangXi 已提交
215
        if gm_acc_step > 1:
216
            logger.info("Gradient merge in [{}], acc step = [{}]".format(
W
WangXi 已提交
217
                gm_mode, gm_acc_step))
218

219 220 221 222 223 224 225 226
        optimizer_sharding = False
        # TODO(wangxi): need support dp_as_opt_sharding with sharding
        #               need support without pp in future
        if self.sharding_degree == 1 and self.dp_degree > 1 \
                and sharding_configs['_dp_as_optimizer_sharding'] \
                and self.pp_degree > 1:
            optimizer_sharding = True

W
WangXi 已提交
227 228 229
        self.hybrid_dp_mode = dp_mode
        self.gradient_merge_mode = gm_mode
        self._gradient_merge_acc_step = gm_acc_step
230
        self._optimizer_sharding = optimizer_sharding
231 232

        # this feature is design for ascend, and should NOT be used in GPU training
W
WangXi 已提交
233
        self.pp_allreduce_in_optimize = sharding_configs[
234
            "pp_allreduce_in_optimize"]
235

W
WangXi 已提交
236 237 238 239
    def _inner_opt_minimize(self, loss, startup_program, parameter_list,
                            no_grad_set):
        pipeline_configs = self.user_defined_strategy.pipeline_configs

240 241 242
        if self.inner_opt is None:
            raise ValueError(
                "self.inner_opt of ShardingOptimizer should not be None.")
243 244 245 246

        if self.pp_degree > 1:
            pp_optimizer = fluid.optimizer.PipelineOptimizer(
                self.inner_opt, self._gradient_merge_acc_step)
W
WangXi 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
            self._pp_optimizer = pp_optimizer

            global_rank = self.role_maker._worker_index()
            schedule_mode = pipeline_configs['schedule_mode']

            pipeline_opt = {
                'schedule_mode': schedule_mode,
                'micro_batch_size': pipeline_configs['micro_batch_size'],
                'local_rank': self.pp_rank,
                'global_rank': global_rank,
                'use_sharding': True,
                # TODO (JZ-LIANG) should revise here for support mix parallelism with pipeline
                'ring_id': 20,
                'global_ring_id': 3,
                'mp_degree': self.mp_degree,
                'mp_rank': global_rank % self.mp_degree,
263
                'scale_gradient': self.scale_gradient
W
WangXi 已提交
264
            }
265 266
            main_program = loss.block.program
            main_program._pipeline_opt = pipeline_opt
267 268 269

            optimize_ops, params_grads, program_list, self.pipeline_pair, self.pp_ring_map = pp_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set)
W
WangXi 已提交
270
            assert self.pp_degree == len(program_list)
271 272 273
        else:
            optimize_ops, params_grads = self.inner_opt.minimize(
                loss, startup_program, parameter_list, no_grad_set)
274 275 276

        if startup_program is None:
            startup_program = default_startup_program()
277 278 279

        if self.pp_degree > 1:
            startup_program = startup_program._pipeline_opt['startup_program']
W
WangXi 已提交
280
            print("pp_rank:", self.pp_rank)
L
lilong12 已提交
281 282 283 284 285
            if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
                main_program = program_list[int(
                    os.getenv("PADDLE_MANUAL_PIPELINE_STAGE"))]
            else:
                main_program = program_list[self.pp_rank]
286 287 288 289 290 291 292 293 294 295 296
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))
            main_block = main_program.global_block()
            new_params_grads = []
            for param, grad in params_grads:
                if main_block.has_var(param.name):
                    new_params_grads.append((param, grad))
            params_grads = new_params_grads
        else:
            main_block = loss.block

297 298 299 300
        startup_block = startup_program.global_block()
        self._main_program = main_block.program
        self._startup_program = startup_program

301 302 303 304 305
        if self.pp_degree > 1:
            pp_optimizer._rename_gradient_var_name(main_block)
            with open("main_%d" % self.role_maker._worker_index(), 'w') as f:
                f.writelines(str(main_program))

W
WangXi 已提交
306
        return optimize_ops, params_grads
307

W
WangXi 已提交
308 309 310 311 312
    def _apply_sharding_pass(self, params_grads):
        if self.sharding_degree == 1: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
313

W
WangXi 已提交
314
        # step1: build shard
315 316
        self._build_shard(params_grads, self.sharding_rank,
                          self.sharding_degree)
317

W
WangXi 已提交
318 319
        # step2: split_program
        self._split_program(main_block)
320

W
WangXi 已提交
321 322 323 324
        # step3: add broadcast and reduce ops
        self._add_broadcast_allreduce(main_block)
        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()
325

W
WangXi 已提交
326
        # step4: remove unneeded ops and vars from block
327 328 329 330 331 332 333 334 335 336 337
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.sharding_ring_id, self.pp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _apply_opt_sharding_pass(self, params_grads):
        """ outer dp as optimizer sharding """
        if self._optimizer_sharding is False: return

        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
338

339 340 341 342 343 344 345 346 347 348 349 350 351 352
        # step1: build shard
        self._build_shard(params_grads, self.dp_rank, self.dp_degree)

        # NOTE(wangxi): prune_main_program will prune cast if not add this
        for param, grad in params_grads:
            self._reduced_grads_to_param[grad.name] = param.name

        # step4: remove unneeded ops and vars from block
        self._prune_main_program(
            main_block, self._shard,
            [self.mp_ring_id, self.pp_ring_id, self.dp_ring_id])
        self._prune_startup_program(startup_block, self._shard)

    def _insert_allreduce_for_pp(self, params_grads):
W
WangXi 已提交
353
        if self.pp_degree == 1: return
354

W
WangXi 已提交
355
        strategy = self.user_defined_strategy
356
        sharding_configs = strategy.sharding_configs
357

W
WangXi 已提交
358 359 360 361 362 363 364 365 366 367 368 369
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # sharding-pp related logic
        # pp_optimizer._rename_gradient_var_name(main_block)
        # crop ops
        if self.sharding_degree > 1:
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if is_update_op(op):
                    op_role_var = op.attr('op_role_var')
                    param_name = op_role_var[0]
                    if not self._shard.has_param(param_name):
370 371
                        main_block._remove_op(idx)

W
WangXi 已提交
372 373 374 375 376 377 378 379
            for idx, op in reversed(list(enumerate(main_block.ops))):
                if op.type != 'cast': continue
                in_name = op.input_arg_names[0]
                if in_name not in self._params: continue
                #if self._shard.has_param(param_name): continue
                if in_name not in main_block.vars:
                    main_block._remove_op(idx)

380 381 382 383 384
        if self._optimizer_sharding:
            # TODO(wangxi): support fp16_allreduce with optimizer sharding
            strategy.fp16_allreduce = False

        shard = self._shard if self._optimizer_sharding else None
W
WangXi 已提交
385
        accumulated_grad_names = self._pp_optimizer._accumulate_gradients(
386
            main_block, strategy=strategy, shard=shard)
387 388

        len_of_ops = len(main_block.ops)
389 390
        if self.scale_gradient:
            self._avg_grad_merge_after_sum(main_block, accumulated_grad_names)
391 392
        first_optimize_op_index = get_first_optimize_op_idx(main_block)

W
WangXi 已提交
393
        if self.pp_allreduce_in_optimize:
394 395 396 397 398 399
            logger.info("Pipeline Persistable grad is {}".format(
                accumulated_grad_names))
            # FIXME(wangxi): accumulated_grad get from pipeline is not
            #  include sharding's param@BroadCast grad when
            #  pp_allreduce_in_optimize
            accumulated_grad_names = insert_reduce_ops(
W
WangXi 已提交
400 401 402 403 404 405
                main_block,
                first_optimize_op_index,
                self.sharding_ring_id,
                accumulated_grad_names,
                self._shard,
                core.op_proto_and_checker_maker.OpRole.Optimize,
406 407 408 409 410 411 412
                use_calc_stream=True,
                rank=self.sharding_rank)

            logger.info("PP-Sharding grad is {}".format(accumulated_grad_names))
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

413 414 415 416 417 418 419 420 421 422 423
        if self._optimizer_sharding:
            accumulated_grad_names = utils.insert_reduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
                strategy=strategy)
424 425
            logger.info(
                "Optimizer grad in this rank {}".format(accumulated_grad_names))
426 427 428
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

429 430
            # NOTE(wangxi): we fused after optimize_cast
            optimize_cast = sharding_configs['optimize_cast']
431 432 433 434 435 436 437 438
            optimizer_param = utils.insert_broadcast_param_ops(
                main_block,
                len_of_ops,
                self.dp_ring_id, [x[0].name for x in params_grads],
                self._shard,
                OpRole.Optimize,
                use_calc_stream=True,
                rank=self.dp_rank,
439
                strategy=None if optimize_cast else strategy)
440 441
            logger.info(
                "Optimizer param in this rank {}".format(optimizer_param))
442
            if not strategy.fuse_grad_merge and not optimize_cast:
443 444
                assert len(accumulated_grad_names) == len(optimizer_param)
        elif self.hybrid_dp and self.hybrid_dp_mode == "pp_hybrid_dp":
445 446 447 448 449 450 451 452 453 454 455 456
            insert_allreduce_ops(
                main_block,
                first_optimize_op_index,
                self.dp_ring_id,
                accumulated_grad_names,
                core.op_proto_and_checker_maker.OpRole.Optimize,
                use_calc_stream=True,
                user_defined_strategy=strategy)
            first_optimize_op_index += (len(main_block.ops) - len_of_ops)
            len_of_ops = len(main_block.ops)

        # FIXME(wangxi): if fp16_allreduce, put cast fp16->fp32 to there?
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    def _avg_grad_merge_after_sum(self, main_block, accumulated_grad_names):
        if self.user_defined_strategy.amp and \
                self.user_defined_strategy.amp_configs['use_dynamic_loss_scaling']:
            # For AMP, if using dynamic loss scaling the avg
            # operation can be simple done by modify the LossScaling op.
            for idx, op in enumerate(main_block.ops):
                if op.type == 'check_finite_and_unscale':
                    loss_scale_name = op.input('Scale')[0]
                    loss_scaling_var = main_block.var(loss_scale_name)
                    loss_scale_tmp_var_name = loss_scale_name + '@TMP'
                    loss_scale_tmp_var = main_block.create_var(
                        name=loss_scale_tmp_var_name,
                        shape=loss_scaling_var.shape,
                        dtype=loss_scaling_var.dtype)
                    main_block._insert_op_without_sync(
                        idx,
                        type='scale',
                        inputs={'X': loss_scaling_var},
                        outputs={'Out': loss_scale_tmp_var},
                        attrs={
                            'scale': self._gradient_merge_acc_step,
                            'bias': 0.0,
                            'bias_after_scale': False,
                            OP_ROLE_KEY: OpRole.Optimize
                        })
                    op._rename_input(loss_scale_name, loss_scale_tmp_var_name)
                    break
        else:
            # For pp, do the avg operation for gradient merge after merging
            # the gradient to meet the logic for gradient merge under pure dp.
            tmp_first_opt_idx = None
            for idx, op in enumerate(main_block.ops):
                if is_optimizer_op(op) and op.type != 'c_sync_comm_stream':
                    tmp_first_opt_idx = idx
                    break
            assert tmp_first_opt_idx is not None, 'Occurs some errors, no optimize ops'
            for grad in accumulated_grad_names:
                main_block._insert_op_without_sync(
                    tmp_first_opt_idx,
                    type='scale',
                    inputs={'X': grad},
                    outputs={'Out': grad},
                    attrs={
                        'scale': 1.0 / self._gradient_merge_acc_step,
                        'bias': 0.0,
                        'bias_after_scale': False,
                        OP_ROLE_KEY: OpRole.Optimize
                    })

W
WangXi 已提交
507
    def _adapt_amp_clip_without_sharding(self):
508 509
        # if not use sharding, adapt amp/clip, for remain parallelism.
        # cast --> amp --> clip --> opt
510 511
        if self.sharding_degree > 1: return
        if self._optimizer_sharding: return
512

W
WangXi 已提交
513 514 515 516
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

        # amp inf_var & clip global_norm_var
517

518 519 520 521 522
        rings = [self.mp_ring_id, self.pp_ring_id]
        # FIXME(wangxi): some problem with NPU found_finite, need sync with DP
        if core.is_compiled_with_npu():
            rings += [self.dp_ring_id]
        FP16Utils.sync_amp_check_nan_inf(main_block, rings)
523

W
WangXi 已提交
524
        gradientclip_helper = GradientClipHelper(None)
525 526 527
        gradientclip_helper.sync_global_norm(main_block,
                                             [self.mp_ring_id, self.pp_ring_id],
                                             self.mp_rank)
W
WangXi 已提交
528 529 530 531 532

    def _insert_loss_grad_scale_op(self):
        main_block = self._main_program.global_block()

        # step6: loss div dp_degree
533 534 535
        global_dp_degree = self.sharding_degree * self.dp_degree
        assert int(global_dp_degree) == global_dp_degree
        if global_dp_degree > 1:
536
            insert_scale_loss_grad_ops(main_block, scale=global_dp_degree)
537

538 539
        main_block._sync_with_cpp()

540
    def _apply_optimize_offload_pass(self, params_grads):
W
WangXi 已提交
541 542 543 544 545
        strategy = self.user_defined_strategy
        sharding_configs = strategy.sharding_configs
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()

546
        mp_ring_id = self.mp_ring_id if self.mp_degree > 1 else None
547
        dp_ring_id = self.dp_ring_id if self.dp_degree > 1 else None
548 549
        offload_helper = OffloadHelper(mp_ring_id=mp_ring_id,
                                       dp_ring_id=dp_ring_id)
550

W
WangXi 已提交
551 552 553 554
        # optimize offload should be enable while gradient merge is enable and
        # acc_step is quite large (e.g. >> 100). Since its memcpy could not be
        # overlap with calc, otherwise it will slower down training severely.
        if sharding_configs["optimize_offload"]:
555
            logger.info("Sharding with optimize offload !")
556
            offload_helper.offload(main_block, startup_block)
557
            # The optimize_cast is already included in offload_fp32param
558
            offload_helper.offload_fp32param(main_block, startup_block)
559 560 561 562
        elif sharding_configs['optimize_cast']:
            logger.info("Sharding with optimize cast !")
            # NOTE(wangxi): optimize_cast will persist fp16 param, it
            # will take more memory, but will be faster. Trade space for time.
563 564 565 566 567
            if self._optimizer_sharding:
                offload_helper.opt_sharding_cast_fp32param(
                    main_block, startup_block,
                    [x[0].name for x in params_grads])
                # NOTE(wangxi): fused after optimize_cast
568 569 570 571
                utils.fuse_opt_broadcast_param_ops(main_block,
                                                   dp_ring_id,
                                                   self._shard,
                                                   strategy=strategy)
572
            else:
573 574
                offload_helper.cast_fp32param_in_optimize(
                    main_block, startup_block)
575

W
WangXi 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    def _dump_program_for_debug(self):
        main_block = self._main_program.global_block()
        startup_block = self._startup_program.global_block()
        with open("start_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(startup_block.program))
        with open("main_sharding_%d" % self.role_maker._worker_index(),
                  'w') as f:
            f.writelines(str(main_block.program))

    def minimize_impl(self,
                      loss,
                      startup_program=None,
                      parameter_list=None,
                      no_grad_set=None):
        # TODO: (JZ-LIANG) support multiple comm in future
        # self._nrings = self.user_defined_strategy.nccl_comm_num
        self._nrings_sharding = 1
        self._nrings_dp = 1

        self._get_sharding_segment_strategy()
        self._get_hybrid_degree()
        self._get_hybrid_dp_mode()

        # config sharding & dp groups
        self._build_groups()

        # inner optimize minimize
        optimize_ops, params_grads = self._inner_opt_minimize(
            loss, startup_program, parameter_list, no_grad_set)

        self._init_comm()

        self._apply_sharding_pass(params_grads)

611 612 613
        self._apply_opt_sharding_pass(params_grads)

        self._insert_allreduce_for_pp(params_grads)
W
WangXi 已提交
614 615 616 617 618 619

        self._adapt_amp_clip_without_sharding()

        # loss div dp_degree
        self._insert_loss_grad_scale_op()

620
        # apply optimize offload or optimize cast
621
        self._apply_optimize_offload_pass(params_grads)
W
WangXi 已提交
622

623
        # step6: (optional) sharding gradient merge
W
WangXi 已提交
624
        self._sharding_gradient_merge()
625 626 627 628 629 630

        # # check op dependecy
        # FIXME (JZ-LIANG) enable checking in future.
        # check_broadcast(main_block)
        # check_allreduce_sum(main_block, self._shard, self.sharding_ring_id,
        #                     self.dp_ring_id)
631

W
WangXi 已提交
632 633 634
        # NOTE(JZ-LIANG) ensure in both sharding_hybrid_dp & pp_hybrid_dp
        # init param broadcast should be called after startup pruning
        self._initialization_broadcast()
635

636 637 638 639
        # NOTE(wangxi): if param is not persistable, program.clone will
        #  failed, so we remove no persistable param, recreate param as a var
        self._recreate_not_persist_param_as_var()

W
WangXi 已提交
640
        self._dump_program_for_debug()
641

642 643 644
        # GPU need to wait server ready, GPU and NPU is Layered connection
        if not core.is_compiled_with_npu():
            self._wait()
645 646
        return optimize_ops, params_grads

647 648 649 650 651 652
    def _init_pair_comm(self, pair, ring_id):
        pp_group_endpoints = [
            self.pp_group_endpoints[pair[0]],
            self.pp_group_endpoints[pair[1]],
        ]
        pp_rank = 0 if self.pp_rank == pair[0] else 1
L
lilong12 已提交
653
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
654 655 656 657 658 659 660
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       pp_group_endpoints,
                                                       pp_rank,
                                                       ring_id,
                                                       False,
                                                       sync=False)
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677

    def _init_npu_pipeline_comm(self, startup_block):
        # NOTE(wangxi): some bug with hccl, must set pp_degree be even number
        assert (self.pp_degree % 2) == 0

        max_ring_id = -1
        my_pair = []
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            max_ring_id = max(max_ring_id, ring_id)
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))

            if self.pp_rank in pair:
                my_pair.append(pair)

        # for example: self.pp_rank=2, self.pp_degree=4
678 679 680 681 682 683 684
        send_to_next_pair = (self.pp_rank, (self.pp_rank + 1) % self.pp_degree
                             )  # 2->3
        recv_from_next_pair = (
            (self.pp_rank + 1) % self.pp_degree, self.pp_rank)  # 3->2
        recv_from_prev_pair = (
            (self.pp_rank - 1 + self.pp_degree) % self.pp_degree, self.pp_rank
        )  # 1->2
685 686 687 688 689 690 691 692 693 694
        send_to_prev_pair = (self.pp_rank, (self.pp_rank - 1 + self.pp_degree) %
                             self.pp_degree)  # 2->1

        even = (self.pp_rank % 2) == 0

        # 1. even send to next, odd recv from prev, 0->1, 2->3
        pair = send_to_next_pair if even else recv_from_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
695 696
        logger.info("pair0(even->odd): pp pair:{}, ring_id: {}".format(
            pair, ring_id))
697 698 699 700 701 702

        # 2. even recv from next, odd send to prev, 1->0, 3->2
        pair = recv_from_next_pair if even else send_to_prev_pair
        ring_id = self.pp_ring_map[pair[0] * 1000 + pair[1]]
        self._init_pair_comm(pair, ring_id)
        my_pair.remove(pair)
703 704
        logger.info("pair1(even<-odd): pp pair:{}, ring_id: {}".format(
            pair, ring_id))
705 706 707 708 709

        # if pp_degree is 2, only need pair(0->1, 1->0)
        if self.pp_degree > 2:
            # 3. odd send to next, even recv from prev, 1->2, 3->0
            pair = send_to_next_pair if not even else recv_from_prev_pair
710 711 712
            ring_id = self.pp_ring_map.get(pair[0] * 1000 + pair[1],
                                           max_ring_id +
                                           1)  # 3->0 not in pp_ring_map
713 714 715 716 717 718 719 720
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair2(odd->even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

            # 4. odd recv from next, even send to prev, 2->1, 0->3
            pair = recv_from_next_pair if not even else send_to_prev_pair
721 722 723
            ring_id = self.pp_ring_map.get(pair[0] * 1000 + pair[1],
                                           max_ring_id +
                                           2)  # 0->3 not in pp_ring_map
724 725 726 727 728 729 730 731 732 733 734
            self._init_pair_comm(pair, ring_id)
            if self.pp_rank != 0 and self.pp_rank != self.pp_degree - 1:
                my_pair.remove(pair)
            logger.info("pair3(odd<-even): pp pair:{}, ring_id: {}".format(
                pair, ring_id))

        assert len(my_pair) == 0, "Current pipeline does not support cross stage communication, " \
                                  "please check unexpected pair {}".format(my_pair)

    def _init_pipeline_comm(self, startup_block):
        # TODO (JZ-LIANG) to unify pp_rank_ and pp_rank
L
lilong12 已提交
735
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None) is None:
736 737 738 739 740 741 742
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.pp_group_endpoints,
                                                       self.pp_rank,
                                                       self.pp_ring_id,
                                                       False,
                                                       sync=False)
743

744 745 746 747 748 749 750 751 752 753 754 755
        if core.is_compiled_with_npu():
            self._init_npu_pipeline_comm(startup_block)
            return

        # GPU
        for pair in self.pipeline_pair:
            pair_key = pair[0] * 1000 + pair[1]
            ring_id = self.pp_ring_map[pair_key]
            logger.info("pp pair:{}, ring_id: {}".format(pair, ring_id))
            if self.pp_rank in pair:
                self._init_pair_comm(pair, ring_id)

756
    def _init_comm(self):
757
        # sync var
758 759
        startup_block = self._startup_program.global_block()

760
        # mp ring
761
        if self.mp_degree > 1:
762 763 764 765 766 767 768
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.mp_group_endpoints,
                                                       self.mp_rank,
                                                       self.mp_ring_id,
                                                       False,
                                                       sync=False)
769

770
        # sharding ring
771 772 773 774 775 776 777 778 779 780
        if self.sharding_degree > 1:
            self._collective_helper._init_communicator(
                self._startup_program,
                self.current_endpoint,
                self.sharding_group_endpoints,
                self.sharding_rank,
                self.sharding_ring_id,
                False,
                sync=False)

781 782
        # pp ring
        if self.pp_degree > 1:
783
            self._init_pipeline_comm(startup_block)
784 785

        # pure dp ring
786
        if self.dp_degree > 1:
787 788 789 790 791 792 793
            self._collective_helper._init_communicator(self._startup_program,
                                                       self.current_endpoint,
                                                       self.dp_group_endpoints,
                                                       self.dp_rank,
                                                       self.dp_ring_id,
                                                       False,
                                                       sync=False)
794

795 796
        startup_block._sync_with_cpp()

797
    def _build_shard(self, params_grads, shard_rank, shard_size):
798 799
        # step 2: split params
        self._params = set([x[0].name for x in params_grads])
800
        self._shard.setup(params_grads, shard_rank, shard_size)
801 802 803 804 805 806

        # step 3: get broadcast vars
        self._broadcast_vars = self._shard.find_broadcast_params(
            self._main_program.global_block())

    def _wait(self, ):
807 808 809
        endpoints = self.global_endpoints[:]
        current_endpoint = endpoints[self.global_rank]
        if self.global_rank == 0:
810 811
            self._collective_helper._wait(current_endpoint, endpoints)

812 813 814 815 816 817 818 819
    def collect_segment(self, segment, op_idx, block):
        segment._start_idx = op_idx + 1
        self._segments.insert(0, segment)
        new_segment = ProgramSegment(block)
        new_segment._end_idx = op_idx + 1

        return new_segment

820 821 822 823 824
    def _split_program(self, block):
        for op_idx, op in reversed(list(enumerate(block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                last_backward_op_idx = op_idx + 1
                break
825 826

        var2broadcast_time = dict()
827 828 829 830 831
        segment = ProgramSegment(block)
        segment._end_idx = last_backward_op_idx
        for op_idx in reversed(range(last_backward_op_idx)):
            op = block.ops[op_idx]
            assert (int(op.attr('op_role')) != int(OpRole.Optimize))
832 833 834 835 836 837 838 839 840 841 842 843 844
            if self._sharding_segment_strategy == "segment_broadcast_MB":
                if segment._param_mem >= self._broadcast_MB:
                    segment = self.collect_segment(segment, op_idx, block)

            elif self._sharding_segment_strategy == "segment_anchors":
                if int(op.attr('op_role')) == int(OpRole.Backward):
                    for input_name in op.desc.input_arg_names():

                        # NOTE (JZ-LIANG) naive rule to support amp, if amp change, should modify here accordingly
                        if self.user_defined_strategy.amp:
                            if ".cast_fp16@GRAD" not in input_name:
                                continue
                            else:
845 846
                                input_name = input_name[:input_name.
                                                        find(".cast_fp16@GRAD")]
847 848

                        if input_name in self._backward_remain_anchors:
849 850
                            segment = self.collect_segment(
                                segment, op_idx, block)
851 852 853 854 855 856 857
                            assert input_name not in self._forward_remain_anchors, "segment anchor [{}] met twice !".format(
                                input_name)
                            self._backward_remain_anchors.remove(input_name)
                            self._forward_remain_anchors.append(input_name)
                elif int(op.attr('op_role')) == int(OpRole.Forward):
                    for output_name in op.desc.output_arg_names():
                        if output_name in self._forward_remain_anchors:
858 859
                            segment = self.collect_segment(
                                segment, op_idx, block)
860
                            self._forward_remain_anchors.remove(output_name)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

            # find broadcast vars
            for input_name in op.desc.input_arg_names():
                if input_name not in self._broadcast_vars:
                    continue
                if input_name in segment._param2broadcast:
                    # skip broadcast because it reuse the old broadcast var
                    broadcast_name = segment._param2broadcast[input_name]
                    if input_name != broadcast_name:
                        op._rename_input(input_name, broadcast_name)
                    continue
                if self._shard.has_param(input_name):
                    broadcast_var_name = input_name
                else:
                    broadcast_var_name = unique_name.generate(input_name +
                                                              "@BroadCast")
                    segment._fill_constant_vars.append(broadcast_var_name)
878 879 880 881 882 883

                # (JZ-LIANG) should use Param base name ?
                broadcast_var_base_name = input_name
                if "subprog" in broadcast_var_base_name:
                    # remove suffix
                    broadcast_var_base_name = broadcast_var_base_name[:
884 885
                                                                      broadcast_var_base_name
                                                                      .find(
886 887 888 889 890 891 892
                                                                          ".subprog"
                                                                      )]

                var2broadcast_time[
                    broadcast_var_base_name] = var2broadcast_time.get(
                        broadcast_var_base_name, 0) + 1

893
                segment._param2broadcast[input_name] = broadcast_var_name
894 895
                segment._broadcast_vars.append(
                    (broadcast_var_name, self._shard.device(input_name)))
896 897 898 899
                segment._param_mem += get_var_size(
                    self._main_program.global_block().var(input_name))

            # find reduce vars
900 901 902 903 904 905 906 907 908 909
            if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
                # place pipeline gradient allreduce in optimize
                pass
            else:
                if is_backward_op(op) and \
                        OP_ROLE_VAR_KEY in op.attr_names:
                    op_role_var = op.all_attrs()[OP_ROLE_VAR_KEY]
                    if len(op_role_var) != 0:
                        assert len(op_role_var) % 2 == 0
                        for i in range(0, len(op_role_var), 2):
910 911 912
                            param, reduced_grad = op_role_var[i], op_role_var[i
                                                                              +
                                                                              1]
913
                            segment._allreduce_vars.append(reduced_grad)
914 915
                            assert (reduced_grad
                                    not in self._reduced_grads_to_param)
916
                            self._reduced_grads_to_param[reduced_grad] = param
917 918 919 920 921 922 923 924 925 926 927

            # find cast op
            if FP16Utils.is_fp16_cast_op(block, op, self._params):
                fp32_param = op.desc.input_arg_names()[0]
                fp16_param = op.desc.output_arg_names()[0]
                if self._shard.has_param(fp32_param):
                    segment._cast_ops[fp16_param] = fp32_param

        if segment._param_mem > 0:
            segment._start_idx = 0
            self._segments.insert(0, segment)
928 929 930 931 932 933 934 935 936 937

        if self._sharding_segment_strategy == "segment_anchors":
            assert len(
                self._forward_remain_anchors) == 0, "remain anchors {}".format(
                    self._forward_remain_anchors)
            assert len(
                self._backward_remain_anchors) == 0, "remain anchors {}".format(
                    self._backward_remain_anchors)

        if self._verbose:
938 939 940
            for varname in sorted(var2broadcast_time,
                                  key=var2broadcast_time.get,
                                  reverse=True):
941
                logger.info("Sharding broadcast: [{}] times [{}]".format(
942 943
                    var2broadcast_time[varname], varname))
            for idx_ in range(len(self._segments)):
944
                logger.info("segment [{}] :".format(idx_))
945 946 947 948 949 950 951
                logger.info("start op: [{}]  [{}]".format(
                    block.ops[self._segments[idx_]._start_idx].desc.type(),
                    block.ops[self._segments[idx_].
                              _start_idx].desc.input_arg_names()))
                logger.info("end   op: [{}]  [{}]".format(
                    block.ops[self._segments[idx_]._end_idx].desc.type(),
                    block.ops[
952
                        self._segments[idx_]._end_idx].desc.input_arg_names()))
953 954
        return

955
    def _prune_main_program(self, block, shard, rings):
956 957 958
        """
        calculate deps from allredce op to optimize op,
        remove ops and vars not needed in this worker
959 960 961 962 963

        1. prune regularization (weight decay)
        2. prune cast_fp32_to_fp16; update amp_infine_checking
        3. prune gradient_clip related; update global_norm_sum
        4. prune optimizer op + param + gradient
964

965 966
        """
        weightdecay_helper = WeightDecayHelper()
967
        weightdecay_helper.prune_weight_decay(block, shard)
968 969

        # FIXME(wangxi): mp should prune duplicated param_grads
970 971 972
        # NOTE (JZ-LIANG) the sync of FoundInfinite should among one entire Model Parallelism
        # group. and each Data Parallelism group should have its own sync of FoundInfinite
        # amp could use global group for sync
973
        FP16Utils.prune_fp16(block, shard, self._reduced_grads_to_param, rings)
974

975
        # clipbyglobalnorm should only use the Model paramllelism group (mp-sharding-pp)
976
        gradientclip_helper = GradientClipHelper(None)
977
        gradientclip_helper.prune_gradient_clip(block, shard, rings)
978 979 980 981 982 983

        # build prog deps
        reduced_grads = []
        for idx, op in enumerate(block.ops):
            input_names = op.desc.input_arg_names()
            output_names = op.desc.output_arg_names()
984 985 986
            # FIXME(wangxi): need use grads, pipeline grad is @GRAD@MERGE
            if op.type == "c_allreduce_sum" and \
                    op.attr('use_model_parallel') is False:
987 988 989 990
                assert (len(output_names) == 1)
                output_name = output_names[0]
                reduced_grads.append(output_name)

991
        # prune optimizer state and param
992 993
        pruned_opti_vars = []
        for var_name in list(block.vars.keys()):
994 995
            if shard.is_opti_var(var_name) and \
              not shard.has_opt_var(var_name):
996 997 998 999 1000 1001 1002 1003 1004 1005
                pruned_opti_vars.append(var_name)
        program_deps = ProgramDeps(block, reduced_grads, pruned_opti_vars)

        # Init
        for var_name in program_deps._end_vars:
            program_deps._should_removed_var.add(var_name)

        # Prune
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type in [
1006 1007 1008 1009 1010 1011 1012
                    "c_allreduce_sum",
                    "c_sync_comm_stream",
                    "c_calc_comm_stream",
                    "c_gen_nccl_id",
                    "c_comm_init",
                    'send_v2',
                    'recv_v2',
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            ]:
                pass
            elif op.type == "conditional_block":
                assert (op.desc.has_attr("sub_block"))
                subblock_idx = op.desc.attr("sub_block").id
                subblock_deps = program_deps.get_sub_block_deps(subblock_idx)
                # only prune amp subblock
                if subblock_deps is None or not self._is_amp_subblock(op):
                    continue
                # init
                reversed_output_vars = []
                for output_name in op.desc.output("Out"):
                    if output_name in program_deps._should_removed_var:
                        subblock_deps._should_removed_var.add(output_name)
                        program_deps.crop_output_var_from_op(idx, output_name)
                    else:
                        reversed_output_vars.append(output_name)
                # prune
                for sub_op_idx, _ in reversed(
                        list(enumerate(subblock_deps._block.ops))):
                    if subblock_deps.should_remove_op(sub_op_idx):
                        subblock_deps.remove_op(sub_op_idx)
                reversed_input_vars = []
                for input_name in op.desc.input('Input'):
                    if input_name not in subblock_deps._should_removed_var:
                        reversed_input_vars.append(input_name)
                    else:
                        program_deps.crop_input_var_from_op(idx, input_name)
                op.desc.set_input('Input', reversed_input_vars)
                op.desc.set_output('Out', reversed_output_vars)
            else:
1044 1045
                # if all outputs of this op are in _should_removed_var
                # _should_removed_var: opt state not cur shard
1046
                if program_deps.should_remove_op(idx):
1047 1048 1049
                    # NOTE(wangxi): need reserve all param in optimizer_sharding
                    reserved_vars = self._params if self._optimizer_sharding else None
                    program_deps.remove_op(idx, reserved_vars)
1050

1051
        # NOTE (JZ-LIANG) revise and unify logic here
1052
        # sharding support fp16_allreduce logic
1053 1054 1055 1056 1057 1058 1059 1060
        block._sync_with_cpp()
        for idx, op in reversed(list(enumerate(block.ops))):
            if op.type == 'concat' and is_optimizer_op(op):
                # remove inputs that not on this card
                reserved_x = []
                for var_name in op.desc.input("X"):
                    if block.has_var(var_name): reserved_x.append(var_name)
                op.desc.set_input('X', reserved_x)
1061 1062 1063 1064 1065
        block._sync_with_cpp()
        return

    def _add_broadcast_allreduce(self, block):
        """
1066 1067
        add broadcast allreduce op
        if enable gradient_merge, insert related ops
1068

1069
        if combined with pipeline(grad accumulate),
1070
        the grad allreduce should be done in optimize role
1071 1072 1073
        """
        if len(self._segments) < 1:
            return
1074
        # sharding
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        if self.pp_degree > 1 and self.pp_allreduce_in_optimize:
            for idx in range(len(self._segments)):
                assert len(self._segments[idx]._allreduce_vars) == 0

        # NOTE (JZ-LIANG) revise and unify logic here
        # fix the _end_idx for segments[-1] if pp is used.
        new_end_idx = self._segments[-1]._end_idx
        for idx in range(self._segments[-1]._end_idx - 1,
                         self._segments[-1]._start_idx - 1, -1):
            op = block.ops[idx]
            if op.type == "fill_constant" or op.type == "sum":
                if "MERGED" in op.output_arg_names[0]: new_end_idx = idx + 1
            elif op.type == "cast":
                if "@TMP" in op.output_arg_names[0]: new_end_idx = idx + 1
        self._segments[-1]._end_idx = new_end_idx

1091
        if self._segments[-1]._allreduce_vars:
1092 1093
            shard_allredue_vars = self._shard.filter_grads(
                self._segments[-1]._allreduce_vars)
1094 1095 1096
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1097 1098
                    insert_sync_comm_ops(block, self._segments[-1]._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)
1099 1100 1101 1102 1103 1104
                    insert_allreduce_ops(
                        block,
                        self._segments[-1]._end_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1105
            # gradient merge
1106
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1107
                self.create_persistable_gradients_and_insert_merge_ops(
1108
                    block, self._startup_program.global_block(),
1109 1110 1111
                    self._segments[-1]._end_idx, shard_allredue_vars,
                    self._shard)

1112
            insert_sync_comm_ops(block, self._segments[-1]._end_idx,
1113
                                 self.sharding_ring_id,
1114
                                 self._segments[-1]._allreduce_vars)
1115 1116 1117 1118 1119 1120 1121 1122
            # allreduce --> reduce
            insert_reduce_ops(block,
                              self._segments[-1]._end_idx,
                              self.sharding_ring_id,
                              self._segments[-1]._allreduce_vars,
                              self._shard,
                              op_role=OpRole.Backward,
                              use_calc_stream=False)
1123 1124 1125 1126

        for idx, segment in reversed(list(enumerate(self._segments))):
            allreduce_vars = self._segments[
                idx - 1]._allreduce_vars if idx > 0 else []
1127 1128 1129
            broadcast_vars = self._segments[
                idx +
                1]._broadcast_vars if idx < len(self._segments) - 1 else []
1130
            fill_constant_vars = self._segments[
1131 1132 1133 1134
                idx +
                2]._fill_constant_vars if idx < len(self._segments) - 2 else []
            cast_ops = self._segments[
                idx + 2]._cast_ops if idx < len(self._segments) - 2 else {}
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

            for op_idx in reversed(range(segment._start_idx, segment._end_idx)):
                op = block.ops[op_idx]
                for input_name in op.desc.input_arg_names():
                    if input_name in segment._param2broadcast and \
                        input_name != segment._param2broadcast[input_name]:
                        op._rename_input(input_name,
                                         segment._param2broadcast[input_name])

            for param_name, broadcast_name in segment._param2broadcast.items():
                if param_name != broadcast_name:
                    block.create_var(
                        name=broadcast_name,
                        shape=self._main_program.global_block().var(
                            param_name).shape,
1150 1151
                        dtype=self._main_program.global_block().var(
                            param_name).dtype,
1152 1153 1154 1155
                        persistable=False)

            # step1: remove cast ops
            block._sync_with_cpp()
1156 1157
            segment._end_idx += FP16Utils.remove_cast_op(
                block, self._params, segment, 0)
1158 1159

            # step2: add Sync ops
1160 1161
            shard_allredue_vars = self._shard.filter_grads(allreduce_vars)

1162 1163 1164
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.dp_ring_id, shard_allredue_vars)

                    broad_cast_vars = [x[0] for x in broadcast_vars]
                    if len(broad_cast_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             broad_cast_vars)
                else:
                    comm_dep_vars = allreduce_vars + [
                        x[0] for x in broadcast_vars
                    ]
                    if len(comm_dep_vars) > 0:
                        insert_sync_comm_ops(block, segment._end_idx,
                                             self.sharding_ring_id,
                                             comm_dep_vars)
            # gradient merge
1182
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1183 1184 1185 1186 1187
                broad_cast_vars = [x[0] for x in broadcast_vars]
                if len(broad_cast_vars) > 0:
                    insert_sync_comm_ops(block, segment._end_idx,
                                         self.sharding_ring_id, broad_cast_vars)

1188 1189 1190 1191 1192 1193 1194 1195
            calc_dep_vars = fill_constant_vars + [
                k for k, v in cast_ops.items()
            ] + self._segments[idx]._allreduce_vars

            if len(calc_dep_vars) > 0:
                insert_sync_calc_op(block, segment._end_idx,
                                    [calc_dep_vars[-1]])

1196
            # step3: insert `fill_constant` ops
1197 1198 1199
            insert_fill_constant_ops(block, segment._end_idx,
                                     fill_constant_vars)

1200
            # step4: add `cast` ops
1201 1202 1203
            insert_cast_ops(block, segment._end_idx, cast_ops)

            # step5: add broadcast ops
1204
            # gradient merge
1205
            if self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1206
                self.create_persistable_gradients_and_insert_merge_ops(
1207 1208
                    block, self._startup_program.global_block(),
                    segment._start_idx, shard_allredue_vars, self._shard)
1209

1210 1211
            insert_broadcast_ops(block, segment._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1212

1213
            # step6: add all_reduce ops
1214
            # dp
1215 1216 1217
            if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
                if self.hybrid_dp and self.hybrid_dp_mode == "sharding_hybrid_dp" and len(
                        shard_allredue_vars) >= 1:
1218 1219 1220 1221 1222 1223
                    insert_allreduce_ops(
                        block,
                        segment._start_idx,
                        self.dp_ring_id,
                        shard_allredue_vars,
                        user_defined_strategy=self.user_defined_strategy)
1224 1225 1226
                    insert_sync_comm_ops(block, segment._start_idx,
                                         self.sharding_ring_id, allreduce_vars)
            # gradient merge
1227
            elif self.gradient_merge_mode == "sharding_gm" and self._gradient_merge_acc_step > 1:
1228 1229 1230
                insert_sync_comm_ops(block, segment._start_idx,
                                     self.sharding_ring_id, allreduce_vars)
            # sharding
1231
            # allreduce --> reduce
1232 1233
            # TODO temp change
            if len(allreduce_vars) > 0:
1234 1235 1236 1237 1238 1239 1240
                insert_reduce_ops(block,
                                  segment._start_idx,
                                  self.sharding_ring_id,
                                  allreduce_vars,
                                  self._shard,
                                  op_role=OpRole.Backward,
                                  use_calc_stream=False)
1241 1242 1243 1244

            block._sync_with_cpp()

        if self._segments[0]._broadcast_vars:
1245 1246 1247
            broadcast_vars = [x[0] for x in self._segments[0]._broadcast_vars]
            insert_sync_comm_ops(block, self._segments[0]._start_idx,
                                 self.sharding_ring_id, broadcast_vars)
1248
            insert_broadcast_ops(block, self._segments[0]._start_idx,
1249
                                 self.sharding_ring_id,
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
                                 self._segments[0]._broadcast_vars)

        fill_constant_vars = []
        for x in self._segments[:2]:
            fill_constant_vars += x._fill_constant_vars

        # Join
        cast_ops = {}
        for x in self._segments[:2]:
            for k, v in x._cast_ops.items():
                cast_ops[k] = v

        calc_deps_vars = fill_constant_vars + [k for k, v in cast_ops.items()]
        if fill_constant_vars or cast_ops:
            insert_sync_calc_op(block, self._segments[0]._start_idx,
                                [calc_deps_vars[-1]])

        if fill_constant_vars:
            insert_fill_constant_ops(block, self._segments[0]._start_idx,
                                     fill_constant_vars)

        if cast_ops:
            insert_cast_ops(block, self._segments[0]._start_idx, cast_ops)

        return

1276
    def _prune_startup_program(self, block, shard):
1277 1278
        for idx, op in reversed(list(enumerate(block.ops))):
            for output_name in op.desc.output_arg_names():
1279 1280 1281
                if shard.has_var(output_name):
                    continue
                if self._optimizer_sharding and shard.is_param(output_name):
1282 1283 1284 1285 1286 1287
                    continue
                #TODO why do we remove op, when only one var is removed
                block._remove_op(idx, sync=False)
                break

        for var_name in list(block.vars.keys()):
1288 1289 1290
            if shard.has_var(var_name):
                continue
            if self._optimizer_sharding and shard.is_param(var_name):
1291 1292 1293
                continue
            block._remove_var(var_name, sync=False)
        block._sync_with_cpp()
1294

1295
    def _build_groups(self):
1296 1297
        """
        pre-assign ring ids
1298 1299 1300 1301
            mp: 0
            sharding: 1
            pure-dp: 2
            global: 3
W
WangXi 已提交
1302 1303
            pp: 4
            pp-pair: >= 20
1304
        if one parallelism is not enable: -1
1305
        and only support parallelism hierarchy: mp --> sharding --> pp --> dp
1306 1307 1308 1309 1310 1311
        """
        # step 1: initialize nccl
        self.global_word_size = self.role_maker._worker_num()
        self.global_rank = self.role_maker._worker_index()
        self.global_endpoints = self.role_maker._get_trainer_endpoints()
        self.current_endpoint = self.global_endpoints[self.global_rank]
1312 1313
        self._collective_helper = CollectiveHelper(self.role_maker,
                                                   nrings=self._nrings_sharding)
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
        assert self.global_word_size % self.mp_degree == 0, \
            "global_word_size: {} should be divisible to the mp_degree: {}".format(self.global_word_size, self.mp_degree)
        assert self.global_word_size % self.sharding_degree == 0, \
            "global_word_size: {} should be divisible to the sharding_degree: {}".format(self.global_word_size, self.sharding_degree)
        assert self.global_word_size % self.pp_degree == 0, \
            "global_word_size: {} should be divisible to the pp_degree: {}".format(self.global_word_size, self.pp_degree)
        assert self.global_word_size % self.dp_degree == 0, \
            "global_word_size: {} should be divisible to the dp_degree: {}".format(self.global_word_size, self.dp_degree)

        # mp group
        if self.mp_degree > 1:
            self.mp_ring_id = 0
            self.mp_rank = self.global_rank % self.mp_degree
            self.mp_group_id = self.global_rank // self.mp_degree
            self.mp_group_endpoints = [
                ep for idx, ep in enumerate(self.global_endpoints)
                if idx // self.mp_degree == self.mp_group_id
1331
            ]
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
            assert self.current_endpoint in self.mp_group_endpoints
            assert len(
                self.mp_group_endpoints
            ) == self.mp_degree, "num of mp worker in group is [{}], but mp group size is [{}]".format(
                len(self.mp_group_endpoints), self.mp_degree)
        else:
            self.mp_degree = 1
            self.mp_ring_id = -1
            self.mp_rank = -1
            self.mp_group_id = -1
            self.mp_group_endpoints = []

1344
        # sharding
1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
        if self.sharding_degree > 1:
            self.sharding_ring_id = 1
            self.sharding_rank = (self.global_rank //
                                  self.mp_degree) % self.sharding_degree
            self.sharding_group_id = self.global_rank // (self.mp_degree *
                                                          self.sharding_degree)
            # mp + sharding + ...
            if self.mp_degree > 1:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)) == self.
                    sharding_group_id and idx % self.mp_degree == self.mp_rank
                ]
1358
            # sharding + ...
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
            else:
                self.sharding_group_endpoints = [
                    ep for idx, ep in enumerate(self.global_endpoints)
                    if (idx // (self.mp_degree * self.sharding_degree)
                        ) == self.sharding_group_id
                ]
            assert self.current_endpoint in self.sharding_group_endpoints
        else:
            self.sharding_degree = 1
            self.sharding_ring_id = -1
            self.sharding_rank = -1
            self.sharding_group_id = -1
            self.sharding_group_endpoints = []

1373 1374
        # pp
        if self.pp_degree > 1:
1375 1376 1377
            self.pp_pair_ring_id = 20
            # pipeline global ring_id set to 4 for sharding0, mp1, dp2, global3
            self.pp_ring_id = 4
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
            self.pp_rank = self.global_rank // (self.sharding_degree *
                                                self.mp_degree) % self.pp_degree
            # (NOTE): Already adjust for (outter-pure) dp
            self.pp_group_id = self.global_rank // (
                self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_first_stage_idx = self.global_rank % (
                self.sharding_degree * self.mp_degree) + self.pp_group_id * (
                    self.mp_degree * self.sharding_degree * self.pp_degree)
            pp_stage_offset = self.sharding_degree * self.mp_degree
            self.pp_group_endpoints = []
            for i in range(self.pp_degree):
1389 1390 1391
                self.pp_group_endpoints.append(
                    self.global_endpoints[pp_first_stage_idx +
                                          pp_stage_offset * i])
1392 1393 1394
            assert self.current_endpoint in self.pp_group_endpoints
        else:
            self.pp_ring_id = -1
1395 1396
            self.pp_degree = 1
            self.pp_pair_ring_id = -1
1397 1398 1399 1400
            self.pp_rank = -1
            self.pp_group_id = -1
            self.pp_group_endpoints = []

1401 1402 1403
        # outter-pure-dp group
        # NOTE (JZ-LIANG) support outter-pure-dp to scale the throughput in 3D parallelism
        # e.g. mp-sharding-pp-dp
1404
        # sharding-hybrid-dp as one senario of outter-pure-dp
L
lilong12 已提交
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
        local_pp_degree = self.pp_degree
        if os.getenv("PADDLE_MANUAL_PIPELINE_STAGE", None):
            assert self.pp_degree == 2, ("For manually set pipeline, only "
                                         "pp_degree = 2 is supported.")
            assert self.global_word_size == self.mp_degree * self.sharding_degree * self.dp_degree, \
                "global work size [{}], mp_degree [{}], sharding_degree [{}], dp_degree [{}].".format(
                    self.global_word_size, self.mp_degree, self.sharding_degree, self.dp_degree)
            local_pp_degree = 1
        else:
            assert self.global_word_size == self.mp_degree * self.sharding_degree * self.pp_degree * self.dp_degree, "mp_degree: [{}], sharding_degree: [{}], pp_degree: [{}], dp_degree: [{}]; BUT global nrank: [{}]".format(
                self.mp_degree, self.sharding_degree, self.pp_degree,
                self.dp_degree, self.global_word_size)
1417

1418 1419
        if self.dp_degree > 1:
            self.dp_ring_id = 2
L
lilong12 已提交
1420 1421
            self.dp_rank = self.global_rank // (
                self.sharding_degree * self.mp_degree * local_pp_degree)
1422
            dp_first_rank_idx = self.global_rank % (
L
lilong12 已提交
1423 1424 1425
                self.sharding_degree * self.mp_degree * local_pp_degree)
            dp_offset = (self.sharding_degree * self.mp_degree *
                         local_pp_degree)
1426 1427
            self.dp_group_endpoints = []
            for i in range(self.dp_degree):
1428 1429
                self.dp_group_endpoints.append(
                    self.global_endpoints[dp_first_rank_idx + dp_offset * i])
1430
            assert self.current_endpoint in self.dp_group_endpoints
1431
            logger.info("Hybrid DP mode turn on !")
1432 1433 1434
        else:
            self.dp_ring_id = -1
            self.dp_rank = -1
1435
            self.dp_group_endpoints = []
1436

1437
        # global group
1438 1439
        # use for gen_nccl_comm_sync, amp check nan inf, clip by global norm
        # NOTE (JZ-LIANG) when use global ring for calc global norm and dp_degree > 1, the allreduce result should be devided by dp_degree
1440
        self.global_ring_id = 3
1441

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
        logger.info("global word size: {}".format(self.global_word_size))
        logger.info("global rank: {}".format(self.global_rank))
        logger.info("global endpoints: {}".format(self.global_endpoints))
        logger.info("global ring id: {}".format(self.global_ring_id))
        logger.info("#####" * 6)

        logger.info("mp group size: {}".format(self.mp_degree))
        logger.info("mp rank: {}".format(self.mp_rank))
        logger.info("mp group id: {}".format(self.mp_group_id))
        logger.info("mp group endpoints: {}".format(self.mp_group_endpoints))
        logger.info("mp ring id: {}".format(self.mp_ring_id))
        logger.info("#####" * 6)

        logger.info("sharding group size: {}".format(self.sharding_degree))
        logger.info("sharding rank: {}".format(self.sharding_rank))
        logger.info("sharding group id: {}".format(self.sharding_group_id))
        logger.info("sharding group endpoints: {}".format(
1459
            self.sharding_group_endpoints))
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
        logger.info("sharding ring id: {}".format(self.sharding_ring_id))
        logger.info("#####" * 6)

        logger.info("pp group size: {}".format(self.pp_degree))
        logger.info("pp rank: {}".format(self.pp_rank))
        logger.info("pp group id: {}".format(self.pp_group_id))
        logger.info("pp group endpoints: {}".format(self.pp_group_endpoints))
        logger.info("pp ring id: {}".format(self.pp_ring_id))
        logger.info("#####" * 6)

        logger.info("pure dp group size: {}".format(self.dp_degree))
        logger.info("pure dp rank: {}".format(self.dp_rank))
        logger.info("pure dp group endpoints: {}".format(
1473
            self.dp_group_endpoints))
1474 1475
        logger.info("pure dp ring id: {}".format(self.dp_ring_id))
        logger.info("#####" * 6)
1476 1477

        return
1478

1479
    def _recreate_not_persist_param_as_var(self):
1480

1481 1482 1483 1484 1485 1486
        def recreate_not_persist_param_as_var(program):
            block = program.global_block()
            params = block.all_parameters()
            for param in params:
                if param.persistable:
                    continue
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
                name = param.name
                shape = param.shape
                dtype = param.dtype
                type = param.type
                lod_level = param.lod_level
                stop_gradient = param.stop_gradient
                trainable = param.trainable
                optimize_attr = param.optimize_attr
                regularizer = param.regularizer
                have_dist_attr = False
                is_distributed = False
                if hasattr(param, 'is_distributed'):
                    have_dist_attr = True
                    is_distributed = param.is_distributed

1503
                block._remove_var(name, sync=False)
1504 1505 1506 1507 1508 1509 1510 1511
                var = block.create_var(name=name,
                                       shape=shape,
                                       dtype=dtype,
                                       type=type,
                                       lod_level=lod_level,
                                       stop_gradient=stop_gradient,
                                       trainable=trainable,
                                       persistable=False)
1512 1513 1514
                if have_dist_attr:
                    var.is_distributed = is_distributed

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
            block._sync_with_cpp()

        recreate_not_persist_param_as_var(self._startup_program)
        recreate_not_persist_param_as_var(self._main_program)

    def _initialization_broadcast(self):
        """
        this funtion is to ensure the initialization between dp group to be
        identical when hybrid-dp is used, and the initialization of
        not distributed param between mp group to be identical.
        """
        if self.dp_degree <= 1 and self.mp_degree <= 1:
            return

        startup_block = self._startup_program.global_block()

        params = startup_block.all_parameters()
        params_name = []
        not_dist_param_name = set()

        for param in params:
            params_name.append(param.name)
            if not hasattr(param, 'is_distributed') or not param.is_distributed:
                not_dist_param_name.add(param.name)

1540 1541 1542 1543 1544 1545 1546 1547
        # offload and optimize_cast will insert broadcast op
        broadcast_params = set()
        for op in startup_block.ops:
            if op.type == 'c_broadcast':
                broadcast_params.add(op.desc.output_arg_names()[0])

        for param in params_name:
            if param in broadcast_params: continue
1548 1549 1550 1551 1552 1553 1554 1555 1556

            rings = []
            # need sync not distributed param in mp group
            if self.mp_degree > 1 and param in not_dist_param_name:
                rings.append(self.mp_ring_id)
            if self.dp_degree > 1:
                rings.append(self.dp_ring_id)

            for ring in rings:
1557 1558 1559 1560 1561 1562 1563 1564 1565
                startup_block.append_op(type='c_broadcast',
                                        inputs={'X': param},
                                        outputs={'Out': param},
                                        attrs={
                                            'ring_id': ring,
                                            'root': 0,
                                            'use_calc_stream': True,
                                            OP_ROLE_KEY: OpRole.Forward
                                        })
1566

1567 1568
        startup_block._sync_with_cpp()

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
    # sharding gradient merge
    def create_persistable_gradients_and_insert_merge_ops(
            self, main_block, startup_block, insert_idx, grad_names, shard):

        for grad_name in grad_names:
            assert get_grad_device(
                grad_name, shard
            ) == shard.worker_idx, "try to merge gradient not belong to current shard: [{}]".format(
                grad_name)
            persistable_grad_name = grad_name + '@GradiantMerge'
            assert grad_name not in self._grad2merged_grad, "grad [{}] already in grad2merged_grad, maybe you meet sharing weight case !".format(
                grad_name)
            self._grad2merged_grad[grad_name] = persistable_grad_name
            grad_var = main_block.var(grad_name)
            # create var
            gradient_merge_var = main_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)
            startup_gradient_merge_var = startup_block.create_var(
                name=persistable_grad_name,
                shape=grad_var.shape,
                dtype=grad_var.dtype,
                persistable=True)

            # merge gradient
            main_block._insert_op_without_sync(
                insert_idx,
                type="elementwise_add",
1599 1600 1601 1602
                inputs={
                    'X': grad_name,
                    'Y': gradient_merge_var
                },
1603 1604 1605 1606 1607 1608 1609 1610
                outputs={'Out': gradient_merge_var},
                attrs={
                    'axis': -1,
                    'use_mkldnn': False,
                    OP_ROLE_KEY: OpRole.Backward
                })

            # startup initialization
1611 1612 1613 1614 1615 1616 1617
            startup_block.append_op(type="fill_constant",
                                    outputs={"Out": startup_gradient_merge_var},
                                    attrs={
                                        "shape": grad_var.shape,
                                        "dtype": grad_var.dtype,
                                        "value": float(0),
                                    })
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

        main_block._sync_with_cpp()
        startup_block._sync_with_cpp()

    def _create_gm_cond(self, main_block):
        # Add const var
        acc_step_var = layers.create_global_var(
            name="gradient_merge_acc_step",
            shape=[1],
            value=int(self._gradient_merge_acc_step),
            dtype='int32',
            persistable=True,
            force_cpu=True)

1632 1633 1634 1635 1636 1637
        zero_var = layers.create_global_var(name="gradient_merge_zero",
                                            shape=[1],
                                            value=int(0),
                                            dtype='int32',
                                            persistable=True,
                                            force_cpu=True)
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

        # Add step var & cond var
        current_step_var = layers.create_global_var(
            name="gradient_merge_current_step",
            shape=[1],
            value=int(0),
            dtype='int32',
            persistable=True,
            force_cpu=True)

1648 1649 1650
        cond_var = main_block.create_var(name="gradient_merge_cond",
                                         shape=[1],
                                         dtype='bool')
1651 1652 1653

        with device_guard("cpu"):
            # step_var = (step_var + 1) % k_step
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
            main_block.append_op(type='increment',
                                 inputs={'X': [current_step_var]},
                                 outputs={'Out': [current_step_var]},
                                 attrs={
                                     'step': float(1),
                                     OP_ROLE_KEY: OpRole.Optimize
                                 })

            main_block.append_op(type='elementwise_mod',
                                 inputs={
                                     'X': current_step_var,
                                     'Y': acc_step_var
                                 },
                                 outputs={'Out': current_step_var},
                                 attrs={
                                     'axis': -1,
                                     OP_ROLE_KEY: OpRole.Optimize,
                                     'use_mkldnn': False
                                 })
1673 1674

            # cond_var = (step_var == 0)
1675 1676 1677 1678 1679 1680 1681
            main_block.append_op(type='equal',
                                 inputs={
                                     'X': current_step_var,
                                     'Y': zero_var
                                 },
                                 outputs={'Out': cond_var},
                                 attrs={OP_ROLE_KEY: OpRole.Optimize})
1682 1683 1684 1685 1686 1687 1688 1689 1690
        # paddle.static.Print(current_step_var, message="in FWBW last conditional")
        return cond_var

    def _true_apply_gradient(self):
        """
        allreduce grad@gradientmerge in dp group
        grad@gradientmerge / acc_step
        re-create all optimize ops of origin main block and rename them
            cast(backward)
1691
            amp
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
            clip
            opt
        # fill constant grad@gradientmerge

        """
        # current conditional block
        main_block = self._main_program.global_block()
        cur_block_idx = self._main_program.current_block_idx
        cur_block = self._main_program.current_block()
        self.cond_block = self._main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)

1706
        # allreduce grad@gradientmerge
1707 1708 1709 1710
        if self.hybrid_dp:
            assert self.dp_ring_id >= 0, "dp_ring_id should larger than 0 when in sharding&DP mode"
            for grad, merged_grad in self._grad2merged_grad.items():
                merged_grad_var = main_block.var(merged_grad)
1711 1712 1713 1714 1715 1716 1717 1718
                cur_block.append_op(type='c_allreduce_sum',
                                    inputs={'X': merged_grad_var},
                                    outputs={'Out': merged_grad_var},
                                    attrs={
                                        'ring_id': self.dp_ring_id,
                                        'use_calc_stream': True,
                                        OP_ROLE_KEY: OpRole.Optimize
                                    })
1719 1720 1721 1722 1723

        # grad@gradientmerge / acc_step
        for grad, merged_grad in self._grad2merged_grad.items():
            # grad /= k_steps
            merged_grad_var = main_block.var(merged_grad)
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
            cur_block.append_op(type='scale',
                                inputs={'X': merged_grad_var},
                                outputs={'Out': merged_grad_var},
                                attrs={
                                    'scale':
                                    1.0 / float(self._gradient_merge_acc_step),
                                    'bias':
                                    0.0,
                                    'bias_after_scale':
                                    False,
                                    OP_ROLE_KEY:
                                    OpRole.Optimize
                                })
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

        # re-create optimize ops
        already_moved_var_names = []
        for op_desc in self.original_optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            for input_name in new_op_desc.input_arg_names():
                if input_name in self._grad2merged_grad:
                    new_op_desc._rename_input(
                        input_name, self._grad2merged_grad[input_name])

            for output_name in new_op_desc.output_arg_names():
                if output_name in self._grad2merged_grad:
                    new_op_desc._rename_output(
                        output_name, self._grad2merged_grad[output_name])

                # move non temp optimize vars from block0 to cond block
                if output_name not in already_moved_var_names and output_name not in self._grad2merged_grad.keys(
                ):
                    var_ = self._main_program.global_block().var(output_name)
                    if not var_.persistable:
                        # move
                        name_ = var_.name
                        shape_ = var_.shape
                        type_ = var_.dtype
                        self._main_program.global_block()._remove_var(
                            var_.name, sync=False)
1765 1766 1767 1768
                        self.cond_block.create_var(name=name_,
                                                   shape=shape_,
                                                   dtype=type_,
                                                   persistable=False)
1769 1770 1771 1772 1773 1774 1775 1776
                        already_moved_var_names.append(name_)

        self._main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # fill zero to grad@gradientmerge
        for grad, merged_grad in self._grad2merged_grad.items():
            merged_grad_var = main_block.var(merged_grad)
1777 1778 1779 1780 1781 1782 1783 1784
            cur_block.append_op(type='fill_constant',
                                outputs={'Out': merged_grad_var},
                                attrs={
                                    "shape": merged_grad_var.shape,
                                    "dtype": merged_grad_var.dtype,
                                    "value": float(0),
                                    OP_ROLE_KEY: OpRole.Optimize
                                })
1785 1786 1787 1788

        # lr_var = main_block.var("gradient_merge_current_step")
        # paddle.static.Print(lr_var, message="in OPTIMIZE last conditional")

W
WangXi 已提交
1789
    def _sharding_gradient_merge(self):
1790 1791 1792 1793 1794 1795
        """
        copy all optimize ops in origin main block
        remove all optimize ops in origin main block
        create cond block

        """
W
WangXi 已提交
1796 1797 1798 1799
        if self.gradient_merge_mode != "sharding_gm" or self._gradient_merge_acc_step <= 1:
            return

        main_block = self._main_program.global_block()
1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
        # copy original optimize ops to temp ops desc list
        # remove them from block 0
        tmp_copy_block = self._main_program._create_block()

        self.original_optimize_ops_desc = []
        for op_idx, op in reversed(list(enumerate(main_block.ops))):
            if int(op.attr('op_role')) != int(OpRole.Optimize):
                continue
            else:
                tmp_op_desc = tmp_copy_block.desc.append_op()
                tmp_op_desc.copy_from(op.desc)
                self.original_optimize_ops_desc.append(tmp_op_desc)
                main_block._remove_op(op_idx, sync=False)
        tmp_copy_block._sync_with_cpp()
        self.original_optimize_ops_desc = list(
            reversed(self.original_optimize_ops_desc))

        # back to block 0
        self._main_program._rollback()

        # create cond vars and ops at the end of block 0
        cond = self._create_gm_cond(main_block)

        # create cond block
        cond_block = self._main_program._create_block()
        self._true_apply_gradient()

        # back to block 0
        self._main_program._rollback()

        # cond op
        step_scope = self._main_program.global_block().create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)
        conditional_block_op = self._main_program.global_block().append_op(
            type='conditional_block',
            inputs={
                'Cond': cond,
                'Input': [],
            },
1839 1840 1841 1842
            outputs={
                'Out': [],
                'Scope': [step_scope]
            },
1843 1844 1845 1846
            attrs={
                'sub_block': cond_block,
                'is_scalar_condition': True,
            })