svd_helper.h 29.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17
#include <Eigen/src/Core/util/Constants.h>
18

19 20 21
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
22

23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
25 26 27
#include "paddle/fluid/operators/diag_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
28 29
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
30 31 32
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
33
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
34
#include "paddle/phi/kernels/funcs/math_function.h"
35 36 37 38

namespace paddle {
namespace operators {
namespace math {
39 40
using InTensors = std::vector<const phi::DenseTensor*>;
using OutTensors = std::vector<phi::DenseTensor*>;
41
using OpName = std::string;
42 43
template <typename T,
          int MajorType = Eigen::RowMajor,
44 45
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
46 47 48

template <typename T>
struct PowFunctor {
49
  PowFunctor(const T* input, T* output, int64_t numel, T exp)
50 51 52 53 54 55 56 57
      : input_(input), output_(output), numel_(numel), exp_(exp) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    output_[idx] = pow(input_[idx], exp_);
  }
  const T* input_;
  T* output_;
  int64_t numel_;
58
  T exp_;
59 60
};

L
Lijunhui 已提交
61 62 63 64 65 66
template <typename T>
struct RealMulComplexFunctor {
  // x: complex number (a+bj)
  // y: complex number (c+0j) pretend to be a real number
  // out: complex number (ac+bcj)
  inline HOSTDEVICE T operator()(T x, T y) {
67
    PADDLE_ENFORCE_LT(
68 69
        y.imag,
        1e-6,
70 71 72
        platform::errors::InvalidArgument("The image part of y must to be 0"
                                          "but got [%d]",
                                          y.imag));
73
    return platform::complex<phi::dtype::Real<T>>(x.real * y.real,
74
                                                  x.imag * y.real);
L
Lijunhui 已提交
75 76 77
  }
};

78
static std::vector<int> GetBroadcastShape(InTensors ins) {
79
  PADDLE_ENFORCE_EQ(
80 81
      ins.size(),
      2,
82 83 84
      platform::errors::InvalidArgument("GetBroadcastShape Receive 2 tensors"
                                        "but got [%d]",
                                        ins.size()));
85 86 87
  auto x_dim = ins[0]->dims();
  auto y_dim = ins[1]->dims();
  std::vector<int> broadcast_shape =
88 89
      (x_dim.size() > y_dim.size() ? phi::vectorize<int>(x_dim)
                                   : phi::vectorize<int>(y_dim));
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
  int rank_min = std::min(x_dim.size(), y_dim.size());
  int rank_x = x_dim.size();
  int rank_y = y_dim.size();
  int final_rank = broadcast_shape.size();
  for (int i = 1; i <= rank_min; ++i) {
    if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    if (x_dim[rank_x - i] == 1) {
      broadcast_shape[final_rank - i] = y_dim[rank_y - i];
      continue;
    }
    if (y_dim[rank_y - i] == 1) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Wrong Input Shape in broadcast operator: "
        "Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
        "shape, but received [%s] (X) vs [%s] (Y).",
111 112
        x_dim,
        y_dim));
113 114 115 116
  }
  return broadcast_shape;
}

117
static inline framework::DDim ComputeAndCheckShapeForConcatOp(
118 119
    const bool is_runtime,
    const std::vector<framework::DDim>& inputs_dims,
120 121 122 123 124
    const size_t axis) {
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
125 126 127 128 129 130 131 132 133 134 135
    PADDLE_ENFORCE_EQ(
        inputs_dims[i].size(),
        out_dims.size(),
        platform::errors::InvalidArgument("The shape of input[0] and input[%d] "
                                          "is expected to be equal."
                                          "But received input[0]'s shape = "
                                          "[%s], input[%d]'s shape = [%s].",
                                          i,
                                          inputs_dims[0],
                                          i,
                                          inputs_dims[i]));
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
          if (inputs_dims[i][j] == -1 || out_dims[j] == -1) {
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (inputs_dims[0][j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
152 153
          PADDLE_ENFORCE_EQ(inputs_dims[0][j],
                            inputs_dims[i][j],
154 155 156 157 158
                            platform::errors::InvalidArgument(
                                "The %d-th dimension of input[0] and input[%d] "
                                "is expected to be equal."
                                "But received input[0]'s shape = "
                                "[%s], input[%d]'s shape = [%s].",
159 160 161 162 163
                                j,
                                i,
                                inputs_dims[0],
                                i,
                                inputs_dims[i]));
164 165 166 167 168 169 170 171 172 173 174 175
        }
        if (!is_runtime && out_dims[j] == -1 && inputs_dims[i][j] > 0) {
          out_dims[j] = inputs_dims[i][j];
        }
      }
    }
  }
  return out_dims;
}

static inline int64_t ComputeAxisForConcatOp(int64_t axis, int64_t rank) {
  PADDLE_ENFORCE_EQ(
176 177
      axis >= -rank && axis < rank,
      true,
178
      platform::errors::InvalidArgument(
179 180 181 182
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis));
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

// Prepared for the broadcast operation
static std::vector<int64_t> get_broadcast_batch_portion(
    std::vector<int64_t> x, std::vector<int64_t> y) {
  size_t size_x = x.size();
  size_t size_y = y.size();
  size_t size = std::max(size_x, size_y);
  std::vector<int64_t> batchPortion(size);

  ptrdiff_t i = (ptrdiff_t)size - 1;
  for (; i >= 0; --i) {
    ptrdiff_t offset = size - i - 1;
    ptrdiff_t dim_x = size_x - offset - 1;
    ptrdiff_t dim_y = size_y - offset - 1;
    int64_t x_size = (dim_x >= 0) ? x[dim_x] : 1;
    int64_t y_size = (dim_y >= 0) ? y[dim_y] : 1;

    PADDLE_ENFORCE_EQ(
206 207
        (x_size == y_size || x_size == 1 || y_size == 1),
        true,
208 209 210
        platform::errors::PreconditionNotMet(
            "The size of tensor x (%d) must match the size of tensor y "
            "(%d) at non-singleton dimension %d.",
211 212 213
            x_size,
            y_size,
            i));
214 215 216 217 218 219

    batchPortion[i] = x_size != 1 ? x_size : y_size;
  }
  return batchPortion;
}

220 221 222 223 224
#define DITO_TRANSPOSE_RANK_CASE(N)                   \
  case N: {                                           \
    phi::funcs::Transpose<DeviceContext, T, N> trans; \
    trans(dev_ctx, x, &ret, axis);                    \
    break;                                            \
225 226 227 228 229 230 231 232
  }

#define DITO_SLICE_RANK_CASE(N)                      \
  case N: {                                          \
    EigenSliceWrapper<N>(&x, offset, extends, &ret); \
    break;                                           \
  }

233 234
template <typename T, typename ValueType>
struct DiagAndFillFunctor {
235 236 237 238 239 240 241
  DiagAndFillFunctor(const int m,
                     const int n,
                     const int num_lower_diags,
                     const int num_upper_diags,
                     const ValueType* scale,
                     const T* input,
                     T* output)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
      : m_(m),
        n_(n),
        num_lower_diags_(num_lower_diags),
        num_upper_diags_(num_upper_diags),
        scale_(scale),
        input_(input),
        output_(output) {}

  HOSTDEVICE void operator()(size_t index) const {
    const int col = index % n_;
    const int row = (index / n_) % m_;
    const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_);
    const int band_end =
        (num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1);
    if (col < band_start || col >= band_end) {
      output_[index] = input_[index];
    } else if (col == band_end - 1) {
      output_[index] = static_cast<T>(scale_[index % m_]);
    } else {
      output_[index] = input_[index];
    }
  }

 private:
  const int m_, n_, num_lower_diags_, num_upper_diags_;
  const ValueType* scale_;
  const T* input_;
  T* output_;
};

template <typename DeviceContext, typename T, typename ValueType = T>
273 274 275
struct DeviceIndependenceTensorOperations {
  // 1. Device indenpendence, for kernel reuse.
  // 2. Input and output is always tensor type.
276 277
  // 3. output phi::DenseTensor is alway allocated
  // 4. Basic phi::DenseTensor operator is supported
278 279 280
  // 5. The Reused Operator Kernel should only be considered as
  //    a wrap function
  using NameInTensorMap =
281
      std::map<std::string, std::vector<const phi::DenseTensor*>>;
282 283 284 285 286 287
  using NameOutTensor = std::vector<std::string>;

  explicit DeviceIndependenceTensorOperations(
      const framework::ExecutionContext& context)
      : context(context) {}

288 289
  phi::DenseTensor Pow(const phi::DenseTensor& x, T exp) {
    phi::DenseTensor out;
290 291
    auto for_range = GetForRange(x.numel());
    int numel = x.numel();
292 293
    PowFunctor<T> functor(
        x.data<T>(), out.mutable_data<T>(x.dims(), x.place()), numel, exp);
294 295 296
    for_range(functor);
    return out;
  }
297 298 299 300 301
  phi::DenseTensor Matmul(const phi::DenseTensor& mat_a,
                          const phi::DenseTensor& mat_b,
                          bool trans_a = false,
                          bool trans_b = false) {
    phi::DenseTensor ret;
302 303
    auto a_dim = mat_a.dims();
    auto b_dim = mat_b.dims();
304
    std::vector<int> x_vec = phi::vectorize<int>(a_dim);
305 306
    x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
    x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
307
    ret.Resize(phi::make_ddim(x_vec));
308 309
    ret.mutable_data<T>(context.GetPlace());
    auto blas = GetBlas();
310 311
    auto mat_a_discrib = phi::funcs::CreateMatrixDescriptor(a_dim, 0, trans_a);
    auto mat_b_discrib = phi::funcs::CreateMatrixDescriptor(b_dim, 0, trans_b);
312 313
    blas.MatMul(
        mat_a, mat_a_discrib, mat_b, mat_b_discrib, T(1.0), &ret, T(0.0));
314
    return ret;
315
  }
316

317
  phi::DenseTensor Transpose(const phi::DenseTensor& x) {
318
    // transpose the last two dimision
319
    phi::DenseTensor ret;
320
    auto x_dim = x.dims();
321
    auto x_vec = phi::vectorize<int>(x_dim);
322 323 324 325 326 327 328 329
    int rank = x_vec.size();
    std::swap(x_vec[rank - 1], x_vec[rank - 2]);
    std::vector<int> out_shape = x_vec;
    std::vector<int> axis(rank);
    for (int i = 0; i < rank; ++i) {
      axis[i] = i;
    }
    std::swap(axis[rank - 1], axis[rank - 2]);
330
    auto& dev_ctx = context.template device_context<DeviceContext>();
331
    ret.Resize(phi::make_ddim(x_vec));
332 333 334 335 336 337 338 339 340 341 342 343 344 345
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_TRANSPOSE_RANK_CASE(2);
      DITO_TRANSPOSE_RANK_CASE(3);
      DITO_TRANSPOSE_RANK_CASE(4);
      DITO_TRANSPOSE_RANK_CASE(5);
      DITO_TRANSPOSE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
346
  }
347 348 349 350
  phi::DenseTensor Diag(const phi::DenseTensor& x,
                        int offset = 0,
                        // FIXME  link error
                        int padding_value = 0) {
351 352
    PADDLE_ENFORCE_EQ(padding_value,
                      0,
353 354
                      platform::errors::InvalidArgument(
                          "Current diag only support padding_value = 0"));
355 356
    PADDLE_ENFORCE_EQ(offset,
                      0,
357 358 359 360
                      platform::errors::InvalidArgument(
                          "Current diag only support offset = 0,"
                          "you can use DiagOp instead(not recommend)"));

361
    phi::DenseTensor ret;
362 363 364
    int x_rank = x.dims().size();
    std::vector<int> out_shape;
    if (x_rank == 2) {
365 366 367 368
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Current diag only support vector"
          "-> diagonalized matrix, not support matrix -> vector,"
          " Use DiagOp instead."));
369 370 371 372 373 374 375
    } else if (x_rank == 1) {
      out_shape.push_back(x.dims()[0]);
      out_shape.push_back(x.dims()[0]);
    } else {
      PADDLE_THROW(
          platform::errors::InvalidArgument("Rank must less or equal than 2"));
    }
376 377 378 379 380 381
    ret = Fill({out_shape[0], out_shape[0]}, 0.0);
    T* output = ret.mutable_data<T>(context.GetPlace());
    auto for_range = GetForRange(x.numel());
    for_range(DiagFunctor<T>(x.data<T>(), x.numel(), output));
    return ret;
  }
L
Lijunhui 已提交
382 383

  // batch_diag for CPU only
384 385
  phi::DenseTensor BatchDiag(const phi::DenseTensor& x, int batch) {
    phi::DenseTensor out;
386
    auto* x_data = x.data<phi::dtype::Real<T>>();
L
Lijunhui 已提交
387
    auto numel = x.numel();
388
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
389 390
        x.dims(),
        context.GetPlace(),
391
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
392 393 394 395 396 397 398 399

    auto x_dims = x.dims();
    int num_dims = x_dims.size();
    std::vector<int> out_shape;

    for (int i = 0; i < num_dims - 1; ++i) {
      out_shape.push_back(x.dims()[i]);
    }
400
    out.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
401 402 403 404 405 406 407 408 409 410 411 412
    int order = x.dims()[num_dims - 1];
    int stride_out = order * order;
    int stride_in = order + 1;
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < order; ++j) {
        out_data[i * order + j] = x_data[stride_out * i + stride_in * j];
      }
    }
    return out;
  }

  // a complex number x times a real number y, which is represented as (a+0j)
413 414
  phi::DenseTensor RealMulComplex(const phi::DenseTensor& x,
                                  const phi::DenseTensor& y) {
415
    phi::DenseTensor ret;
L
Lijunhui 已提交
416
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
417
    ret.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
418 419 420 421 422
    ElementwiseComputeEx<RealMulComplexFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, RealMulComplexFunctor<T>(), &ret);
    return ret;
  }

423 424
  phi::DenseTensor Div(const phi::DenseTensor& x, const phi::DenseTensor& y) {
    phi::DenseTensor ret;
425 426 427 428 429 430 431 432 433 434
    if (x.type() != y.type()) {
      ret.mutable_data<T>(x.dims(), context.GetPlace());
      auto x_vector = EigenVector<T>::Flatten(x);
      auto y_vector = EigenVector<ValueType>::Flatten(y);
      auto out_vector = EigenVector<T>::Flatten(ret);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      out_vector.device(place) = x_vector / y_vector;
    } else {
      std::vector<int> out_shape = GetBroadcastShape({&x, &y});
435
      ret.Resize(phi::make_ddim(out_shape));
436 437 438
      ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
          context, &x, &y, -1, DivFunctor<T>(), &ret);
    }
439
    return ret;
440
  }
441
  phi::DenseTensor Add(const phi::DenseTensor& x, const phi::DenseTensor& y) {
442
    // element wise add, support numpy broadcast.
443
    phi::DenseTensor ret;
444
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
445
    ret.Resize(phi::make_ddim(out_shape));
446 447 448
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, AddFunctor<T>(), &ret);
    return ret;
449
  }
450 451
  phi::DenseTensor Mul(const phi::DenseTensor& x, const phi::DenseTensor& y) {
    phi::DenseTensor ret;
452
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
453
    ret.Resize(phi::make_ddim(out_shape));
454 455 456 457 458
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, MulFunctor<T>(), &ret);
    return ret;
  }

459 460
  phi::DenseTensor ReduceSum(const phi::DenseTensor& x,
                             std::vector<int> out_dim) {
461 462 463 464 465 466
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim);
  }

467 468
  phi::DenseTensor ReduceMax(const phi::DenseTensor& x,
                             std::vector<int> out_dim) {
469 470 471 472
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim);
473
  }
474 475
  // Support float and complex type subtraction,the default is T type
  template <typename InT = T>
476 477
  phi::DenseTensor Sub(const phi::DenseTensor& x, const phi::DenseTensor& y) {
    phi::DenseTensor ret;
478
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
479
    ret.Resize(phi::make_ddim(out_shape));
480 481 482 483
    if (platform::is_gpu_place(context.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      // For GPU, there is no need to define XxxInverseFunctor and call
      // ElementwiseComputeEx in two branches.
484 485
      ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
          context, &x, &y, -1, SubFunctor<InT>(), &ret);
486
#endif
487
    } else {
488
      if (x.dims().size() >= y.dims().size()) {
489 490
        ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, SubFunctor<InT>(), &ret);
491
      } else {
492 493 494 495
        // This is copyed from elementwise_sub, which means we
        // need reverse will xrank < yrank
        ElementwiseComputeEx<InverseSubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, InverseSubFunctor<InT>(), &ret);
496
      }
497 498
    }
    return ret;
499
  }
500
  const phi::DenseTensor Unsqueeze(const phi::DenseTensor& x, int axis = 0) {
501
    // don't copy data, only change the dims
502
    phi::DenseTensor out;
503
    out.ShareDataWith(x);
504
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
505 506 507 508 509 510 511
    if (axis >= 0) {
      auto index = (out_shape.begin() + axis);
      out_shape.insert(index, 1);
    } else if (axis < 0) {
      auto index = (out_shape.end() + axis + 1);
      out_shape.insert(index, 1);
    }
512
    out.Resize(phi::make_ddim(out_shape));
513 514
    return out;
  }
515 516
  phi::DenseTensor Fill(std::vector<int> shape, float fill_value) {
    phi::DenseTensor ret;
517
    ret.Resize(phi::make_ddim(shape));
518 519
    ret.mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
520
    phi::funcs::SetConstant<DeviceContext, T>()(dev_ctx, &ret, T(fill_value));
521
    return ret;
522
  }
523
  phi::DenseTensor Infinits(std::vector<int> shape) {
524 525
    auto value = static_cast<T>(std::numeric_limits<double>::infinity());
    return Fill(shape, value);
526
  }
527
  phi::DenseTensor Eye(int n) {
528
    auto output = Fill({n}, 1);
529 530 531
    auto ret = Diag(output);
    return ret;
  }
532 533 534 535 536
  phi::DenseTensor Slice(const phi::DenseTensor& x,
                         std::vector<int> axes,
                         std::vector<int> starts,
                         std::vector<int> ends) {
    phi::DenseTensor ret;
537
    std::vector<int> new_axes = axes;
538
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
539
    size_t rank = out_shape.size();
540
    PADDLE_ENFORCE_EQ(
541 542
        axes.size(),
        starts.size(),
543 544
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    PADDLE_ENFORCE_EQ(
545 546
        ends.size(),
        starts.size(),
547 548 549 550 551 552 553
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    for (unsigned int i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      if (axis < 0) axis = rank + axis;
      new_axes[i] = axis;  // change negative to positive
      int st = starts[i];
      int ed = ends[i];
554 555
      PADDLE_ENFORCE_GT(ed,
                        st,
556 557 558 559
                        platform::errors::InvalidArgument(
                            "C++ Slice Operation Not Support End < Start"));
      out_shape[axis] = ed - st;
    }
560 561 562 563 564 565 566 567 568
    std::vector<int> offset(rank), extends(rank);
    for (size_t i = 0; i < rank; ++i) {
      offset[i] = 0;
      extends[i] = x.dims()[i];
    }
    for (size_t i = 0; i < new_axes.size(); ++i) {
      offset[new_axes[i]] = starts[i];
      extends[new_axes[i]] = ends[i] - starts[i];
    }
569
    ret.Resize(phi::make_ddim(out_shape));
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_SLICE_RANK_CASE(1);
      DITO_SLICE_RANK_CASE(2);
      DITO_SLICE_RANK_CASE(3);
      DITO_SLICE_RANK_CASE(4);
      DITO_SLICE_RANK_CASE(5);
      DITO_SLICE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
585 586
  }

587 588 589
  phi::DenseTensor TrilTriu(const phi::DenseTensor& x,
                            int diagonal,
                            bool lower) {
590 591 592 593 594
    framework::AttributeMap attrs;
    attrs["diagonal"] = diagonal;
    attrs["lower"] = lower;
    NameInTensorMap inputs({{"X", {&x}}});
    int x_rank = x.dims().size();
595
    PADDLE_ENFORCE_GE(
596 597
        x_rank,
        2,
598
        platform::errors::InvalidArgument("Rank must be at least 2."));
599
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
600 601 602
    return CreateOpRunAndReturnTensor("tril_triu", inputs, attrs, out_shape);
  }

603 604 605 606 607
  phi::DenseTensor TriangularSolve(const phi::DenseTensor& x,
                                   const phi::DenseTensor& y,
                                   bool upper,
                                   bool transpose,
                                   bool unitriangular) {
608 609 610 611 612 613 614 615
    framework::AttributeMap attrs;
    attrs["upper"] = upper;
    attrs["transpose"] = transpose;
    attrs["unitriangular"] = unitriangular;
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    auto y_dims_n = y_dims.size();
616 617
    std::vector<int64_t> x_dims_vec = phi::vectorize<int64_t>(x_dims);
    std::vector<int64_t> y_dims_vec = phi::vectorize<int64_t>(y_dims);
618 619 620 621 622 623 624
    std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(),
                                        x_dims_vec.end() - 2);
    std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(),
                                        y_dims_vec.end() - 2);
    std::vector<int64_t> expand_batch_portion =
        get_broadcast_batch_portion(x_dims_vec_cut, y_dims_vec_cut);
    std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
625 626 627
    y_broadcast_dims.insert(
        y_broadcast_dims.end(),
        {y_dims_vec[y_dims_n - 2], y_dims_vec[y_dims_n - 1]});
628 629
    std::vector<int> out_shape(y_broadcast_dims.begin(),
                               y_broadcast_dims.end());
630 631
    return CreateOpRunAndReturnTensor(
        "triangular_solve", inputs, attrs, out_shape);
632 633
  }

634 635 636
  phi::DenseTensor ConcatTwoTensors(const phi::DenseTensor& x,
                                    const phi::DenseTensor& y,
                                    int axis) {
637 638 639 640 641 642 643 644 645 646 647 648
    framework::AttributeMap attrs;
    attrs["axis"] = axis;
    std::vector<framework::DDim> inputs_dims({x.dims(), y.dims()});
    NameInTensorMap inputs({{"X", {&x, &y}}});
    size_t axis_ =
        ComputeAxisForConcatOp(static_cast<int64_t>(axis),
                               static_cast<int64_t>(inputs_dims[0].size()));
    framework::DDim out_dims =
        ComputeAndCheckShapeForConcatOp(true, inputs_dims, axis_);
    if (out_dims[axis_] < 0) {
      out_dims[axis_] = -1;
    }
649
    std::vector<int> out_shape = phi::vectorize<int>(out_dims);
650 651 652
    return CreateOpRunAndReturnTensor("concat", inputs, attrs, out_shape);
  }

653 654
  phi::DenseTensor Conj(const phi::DenseTensor& x) {
    phi::DenseTensor out;
655 656 657
    auto* out_data = out.mutable_data<T>(x.dims(), context.GetPlace());
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(x.numel());
658
    phi::funcs::ConjFunctor<T> functor(x_data, x.numel(), out_data);
659 660 661 662
    for_range(functor);
    return out;
  }

663 664
  phi::DenseTensor Real(const phi::DenseTensor& x) {
    phi::DenseTensor out;
L
Lijunhui 已提交
665
    auto numel = x.numel();
666
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
667 668
        x.dims(),
        context.GetPlace(),
669
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
670 671
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(numel);
672
    phi::funcs::RealFunctor<T> functor(x_data, out_data, numel);
L
Lijunhui 已提交
673 674 675 676
    for_range(functor);
    return out;
  }

677 678 679 680 681 682 683
  phi::DenseTensor DiagFill(const int m,
                            const int n,
                            const int num_lower_diags,
                            const int num_upper_diags,
                            const phi::DenseTensor& scale,
                            const phi::DenseTensor& input) {
    phi::DenseTensor out;
684 685 686
    auto& dev_ctx = context.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, input.numel());
    DiagAndFillFunctor<T, ValueType> diag_and_copy_functor(
687 688 689 690 691 692 693
        m,
        n,
        num_lower_diags,
        num_upper_diags,
        scale.data<ValueType>(),
        input.data<T>(),
        out.mutable_data<T>(input.dims(), input.place()));
694 695 696 697
    for_range(diag_and_copy_functor);
    return out;
  }

698 699
 private:
  const framework::ExecutionContext& context;
700
  phi::funcs::BlasT<DeviceContext, T> GetBlas() {
701 702
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return phi::funcs::GetBlas<DeviceContext, T>(dev_ctx);
703 704 705 706 707
  }
  platform::ForRange<DeviceContext> GetForRange(int numel) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return platform::ForRange<DeviceContext>(dev_ctx, numel);
  }
708
  template <size_t D>
709
  void EigenSliceWrapper(const phi::DenseTensor* in,
710
                         const std::vector<int>& start,
711
                         const std::vector<int>& end,
712
                         phi::DenseTensor* out) {
713
    // Slice by call Eigen phi::DenseTensor Function `.slice()`
714
    size_t rank = in->dims().size();
715 716
    PADDLE_ENFORCE_EQ(start.size(),
                      rank,
717 718 719
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function start "
                          "argument must have the same length as input rank."));
720 721
    PADDLE_ENFORCE_EQ(end.size(),
                      rank,
722 723 724 725 726 727 728 729 730 731 732 733 734 735
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function end "
                          "argument must have the same length as input rank."));
    auto eigen_place_ptr =
        context.template device_context<DeviceContext>().eigen_device();
    auto eigen_place = *eigen_place_ptr;
    auto out_t = framework::EigenTensor<T, D>::From(*out, out->dims());
    auto in_t = framework::EigenTensor<T, D>::From(*in, in->dims());
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = start[i];
      extents_32bit[i] = end[i];
    }
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
736 737 738 739 740
        eigen_place,
        framework::To32BitIndex(out_t),
        framework::To32BitIndex(in_t),
        offsets_32bit,
        extents_32bit);
741
  }
742
  phi::DenseTensor CreateOpRunAndReturnTensor(
743 744 745 746
      const std::string& type,
      const NameInTensorMap& inputs,
      const framework::AttributeMap& attrs,
      std::vector<int> out_shape,
747
      NameOutTensor out_str = {"Out"}) {
748
    // varialble set dims must be phi::DenseTensor / SelectedRowTensor
749 750 751
    framework::Scope& local_scope = context.scope().NewScope();
    framework::VariableNameMap op_outputs;
    for (auto out_name : out_str) {
752
      local_scope.Var("tmp_" + out_name)->GetMutable<phi::DenseTensor>();
753 754 755
      op_outputs[out_name].emplace_back("tmp_" + out_name);
    }
    auto out_var = local_scope.Var("tmp_Out");  // return the Out
756
    // create Out phi::DenseTensor and allocat memory
757
    out_var->GetMutable<phi::DenseTensor>()->mutable_data<T>(
758 759
        phi::make_ddim(out_shape), context.GetPlace());
    // phi::make_ddim(out_shape)
760 761 762 763 764 765 766 767 768
    framework::VariableNameMap op_inputs;
    int counter = 0;
    for (auto item : inputs) {
      auto& tensors = item.second;
      std::vector<std::string> name_vector;
      for (auto each_tensor : tensors) {
        // create score variable and reset the tensor.
        std::string _name = "tmp" + std::to_string(counter++);
        auto in_var = local_scope.Var(_name);  // create
769
        phi::DenseTensor tmp_tns;
770
        tmp_tns.ShareDataWith(*each_tensor);  // tensor -> lodtensor
771
        (*in_var->GetMutable<phi::DenseTensor>()) =
772 773 774 775 776
            tmp_tns;  // initialize and set value
        name_vector.emplace_back(_name);
      }
      op_inputs[item.first] = name_vector;
    }
777

778 779 780
    auto op =
        framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
    op->Run(local_scope, context.GetPlace());
781
    phi::DenseTensor out;
782
    out.ShareDataWith(*(out_var->GetMutable<phi::DenseTensor>()));
783
    out.Resize(phi::make_ddim(out_shape));
784 785 786 787 788 789 790
    context.scope().DeleteScope(&local_scope);
    return out;
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle