svd_helper.h 28.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17
#include <Eigen/src/Core/util/Constants.h>
18

19 20 21
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
22

23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
25 26 27
#include "paddle/fluid/operators/diag_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
28 29
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
30 31 32
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
33
#include "paddle/phi/kernels/funcs/lapack/lapack_function.h"
34
#include "paddle/phi/kernels/funcs/math_function.h"
35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {
namespace math {
using Tensor = framework::Tensor;
using InTensors = std::vector<const Tensor*>;
using OutTensors = std::vector<Tensor*>;
using OpName = std::string;
43 44
template <typename T,
          int MajorType = Eigen::RowMajor,
45 46
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
47 48 49

template <typename T>
struct PowFunctor {
50
  PowFunctor(const T* input, T* output, int64_t numel, T exp)
51 52 53 54 55 56 57 58
      : input_(input), output_(output), numel_(numel), exp_(exp) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    output_[idx] = pow(input_[idx], exp_);
  }
  const T* input_;
  T* output_;
  int64_t numel_;
59
  T exp_;
60 61
};

L
Lijunhui 已提交
62 63 64 65 66 67
template <typename T>
struct RealMulComplexFunctor {
  // x: complex number (a+bj)
  // y: complex number (c+0j) pretend to be a real number
  // out: complex number (ac+bcj)
  inline HOSTDEVICE T operator()(T x, T y) {
68
    PADDLE_ENFORCE_LT(
69 70
        y.imag,
        1e-6,
71 72 73
        platform::errors::InvalidArgument("The image part of y must to be 0"
                                          "but got [%d]",
                                          y.imag));
74
    return platform::complex<phi::dtype::Real<T>>(x.real * y.real,
75
                                                  x.imag * y.real);
L
Lijunhui 已提交
76 77 78
  }
};

79
static std::vector<int> GetBroadcastShape(InTensors ins) {
80
  PADDLE_ENFORCE_EQ(
81 82
      ins.size(),
      2,
83 84 85
      platform::errors::InvalidArgument("GetBroadcastShape Receive 2 tensors"
                                        "but got [%d]",
                                        ins.size()));
86 87 88
  auto x_dim = ins[0]->dims();
  auto y_dim = ins[1]->dims();
  std::vector<int> broadcast_shape =
89 90
      (x_dim.size() > y_dim.size() ? phi::vectorize<int>(x_dim)
                                   : phi::vectorize<int>(y_dim));
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  int rank_min = std::min(x_dim.size(), y_dim.size());
  int rank_x = x_dim.size();
  int rank_y = y_dim.size();
  int final_rank = broadcast_shape.size();
  for (int i = 1; i <= rank_min; ++i) {
    if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    if (x_dim[rank_x - i] == 1) {
      broadcast_shape[final_rank - i] = y_dim[rank_y - i];
      continue;
    }
    if (y_dim[rank_y - i] == 1) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Wrong Input Shape in broadcast operator: "
        "Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
        "shape, but received [%s] (X) vs [%s] (Y).",
112 113
        x_dim,
        y_dim));
114 115 116 117
  }
  return broadcast_shape;
}

118
static inline framework::DDim ComputeAndCheckShapeForConcatOp(
119 120
    const bool is_runtime,
    const std::vector<framework::DDim>& inputs_dims,
121 122 123 124 125
    const size_t axis) {
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
126 127 128 129 130 131 132 133 134 135 136
    PADDLE_ENFORCE_EQ(
        inputs_dims[i].size(),
        out_dims.size(),
        platform::errors::InvalidArgument("The shape of input[0] and input[%d] "
                                          "is expected to be equal."
                                          "But received input[0]'s shape = "
                                          "[%s], input[%d]'s shape = [%s].",
                                          i,
                                          inputs_dims[0],
                                          i,
                                          inputs_dims[i]));
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
          if (inputs_dims[i][j] == -1 || out_dims[j] == -1) {
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (inputs_dims[0][j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
153 154
          PADDLE_ENFORCE_EQ(inputs_dims[0][j],
                            inputs_dims[i][j],
155 156 157 158 159
                            platform::errors::InvalidArgument(
                                "The %d-th dimension of input[0] and input[%d] "
                                "is expected to be equal."
                                "But received input[0]'s shape = "
                                "[%s], input[%d]'s shape = [%s].",
160 161 162 163 164
                                j,
                                i,
                                inputs_dims[0],
                                i,
                                inputs_dims[i]));
165 166 167 168 169 170 171 172 173 174 175 176
        }
        if (!is_runtime && out_dims[j] == -1 && inputs_dims[i][j] > 0) {
          out_dims[j] = inputs_dims[i][j];
        }
      }
    }
  }
  return out_dims;
}

static inline int64_t ComputeAxisForConcatOp(int64_t axis, int64_t rank) {
  PADDLE_ENFORCE_EQ(
177 178
      axis >= -rank && axis < rank,
      true,
179
      platform::errors::InvalidArgument(
180 181 182 183
          "The axis is expected to be in range of [%d, %d), but got %d",
          -rank,
          rank,
          axis));
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

// Prepared for the broadcast operation
static std::vector<int64_t> get_broadcast_batch_portion(
    std::vector<int64_t> x, std::vector<int64_t> y) {
  size_t size_x = x.size();
  size_t size_y = y.size();
  size_t size = std::max(size_x, size_y);
  std::vector<int64_t> batchPortion(size);

  ptrdiff_t i = (ptrdiff_t)size - 1;
  for (; i >= 0; --i) {
    ptrdiff_t offset = size - i - 1;
    ptrdiff_t dim_x = size_x - offset - 1;
    ptrdiff_t dim_y = size_y - offset - 1;
    int64_t x_size = (dim_x >= 0) ? x[dim_x] : 1;
    int64_t y_size = (dim_y >= 0) ? y[dim_y] : 1;

    PADDLE_ENFORCE_EQ(
207 208
        (x_size == y_size || x_size == 1 || y_size == 1),
        true,
209 210 211
        platform::errors::PreconditionNotMet(
            "The size of tensor x (%d) must match the size of tensor y "
            "(%d) at non-singleton dimension %d.",
212 213 214
            x_size,
            y_size,
            i));
215 216 217 218 219 220

    batchPortion[i] = x_size != 1 ? x_size : y_size;
  }
  return batchPortion;
}

221 222 223 224 225
#define DITO_TRANSPOSE_RANK_CASE(N)                   \
  case N: {                                           \
    phi::funcs::Transpose<DeviceContext, T, N> trans; \
    trans(dev_ctx, x, &ret, axis);                    \
    break;                                            \
226 227 228 229 230 231 232 233
  }

#define DITO_SLICE_RANK_CASE(N)                      \
  case N: {                                          \
    EigenSliceWrapper<N>(&x, offset, extends, &ret); \
    break;                                           \
  }

234 235
template <typename T, typename ValueType>
struct DiagAndFillFunctor {
236 237 238 239 240 241 242
  DiagAndFillFunctor(const int m,
                     const int n,
                     const int num_lower_diags,
                     const int num_upper_diags,
                     const ValueType* scale,
                     const T* input,
                     T* output)
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
      : m_(m),
        n_(n),
        num_lower_diags_(num_lower_diags),
        num_upper_diags_(num_upper_diags),
        scale_(scale),
        input_(input),
        output_(output) {}

  HOSTDEVICE void operator()(size_t index) const {
    const int col = index % n_;
    const int row = (index / n_) % m_;
    const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_);
    const int band_end =
        (num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1);
    if (col < band_start || col >= band_end) {
      output_[index] = input_[index];
    } else if (col == band_end - 1) {
      output_[index] = static_cast<T>(scale_[index % m_]);
    } else {
      output_[index] = input_[index];
    }
  }

 private:
  const int m_, n_, num_lower_diags_, num_upper_diags_;
  const ValueType* scale_;
  const T* input_;
  T* output_;
};

template <typename DeviceContext, typename T, typename ValueType = T>
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
struct DeviceIndependenceTensorOperations {
  // 1. Device indenpendence, for kernel reuse.
  // 2. Input and output is always tensor type.
  // 3. output Tensor is alway allocated
  // 4. Basic Tensor operator is supported
  // 5. The Reused Operator Kernel should only be considered as
  //    a wrap function
  using NameInTensorMap =
      std::map<std::string, std::vector<const framework::Tensor*>>;
  using NameOutTensor = std::vector<std::string>;

  explicit DeviceIndependenceTensorOperations(
      const framework::ExecutionContext& context)
      : context(context) {}

289
  framework::Tensor Pow(const framework::Tensor& x, T exp) {
290 291 292
    framework::Tensor out;
    auto for_range = GetForRange(x.numel());
    int numel = x.numel();
293 294
    PowFunctor<T> functor(
        x.data<T>(), out.mutable_data<T>(x.dims(), x.place()), numel, exp);
295 296 297 298
    for_range(functor);
    return out;
  }
  framework::Tensor Matmul(const framework::Tensor& mat_a,
299 300
                           const framework::Tensor& mat_b,
                           bool trans_a = false,
301
                           bool trans_b = false) {
302
    framework::Tensor ret;
303 304
    auto a_dim = mat_a.dims();
    auto b_dim = mat_b.dims();
305
    std::vector<int> x_vec = phi::vectorize<int>(a_dim);
306 307
    x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
    x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
308
    ret.Resize(phi::make_ddim(x_vec));
309 310
    ret.mutable_data<T>(context.GetPlace());
    auto blas = GetBlas();
311 312
    auto mat_a_discrib = phi::funcs::CreateMatrixDescriptor(a_dim, 0, trans_a);
    auto mat_b_discrib = phi::funcs::CreateMatrixDescriptor(b_dim, 0, trans_b);
313 314
    blas.MatMul(
        mat_a, mat_a_discrib, mat_b, mat_b_discrib, T(1.0), &ret, T(0.0));
315
    return ret;
316
  }
317

318
  framework::Tensor Transpose(const framework::Tensor& x) {
319 320
    // transpose the last two dimision
    framework::Tensor ret;
321
    auto x_dim = x.dims();
322
    auto x_vec = phi::vectorize<int>(x_dim);
323 324 325 326 327 328 329 330
    int rank = x_vec.size();
    std::swap(x_vec[rank - 1], x_vec[rank - 2]);
    std::vector<int> out_shape = x_vec;
    std::vector<int> axis(rank);
    for (int i = 0; i < rank; ++i) {
      axis[i] = i;
    }
    std::swap(axis[rank - 1], axis[rank - 2]);
331
    auto& dev_ctx = context.template device_context<DeviceContext>();
332
    ret.Resize(phi::make_ddim(x_vec));
333 334 335 336 337 338 339 340 341 342 343 344 345 346
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_TRANSPOSE_RANK_CASE(2);
      DITO_TRANSPOSE_RANK_CASE(3);
      DITO_TRANSPOSE_RANK_CASE(4);
      DITO_TRANSPOSE_RANK_CASE(5);
      DITO_TRANSPOSE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
347
  }
348 349
  framework::Tensor Diag(const framework::Tensor& x,
                         int offset = 0,
350
                         // FIXME  link error
351
                         int padding_value = 0) {
352 353
    PADDLE_ENFORCE_EQ(padding_value,
                      0,
354 355
                      platform::errors::InvalidArgument(
                          "Current diag only support padding_value = 0"));
356 357
    PADDLE_ENFORCE_EQ(offset,
                      0,
358 359 360 361 362
                      platform::errors::InvalidArgument(
                          "Current diag only support offset = 0,"
                          "you can use DiagOp instead(not recommend)"));

    framework::Tensor ret;
363 364 365
    int x_rank = x.dims().size();
    std::vector<int> out_shape;
    if (x_rank == 2) {
366 367 368 369
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Current diag only support vector"
          "-> diagonalized matrix, not support matrix -> vector,"
          " Use DiagOp instead."));
370 371 372 373 374 375 376
    } else if (x_rank == 1) {
      out_shape.push_back(x.dims()[0]);
      out_shape.push_back(x.dims()[0]);
    } else {
      PADDLE_THROW(
          platform::errors::InvalidArgument("Rank must less or equal than 2"));
    }
377 378 379 380 381 382
    ret = Fill({out_shape[0], out_shape[0]}, 0.0);
    T* output = ret.mutable_data<T>(context.GetPlace());
    auto for_range = GetForRange(x.numel());
    for_range(DiagFunctor<T>(x.data<T>(), x.numel(), output));
    return ret;
  }
L
Lijunhui 已提交
383 384 385 386

  // batch_diag for CPU only
  Tensor BatchDiag(const Tensor& x, int batch) {
    Tensor out;
387
    auto* x_data = x.data<phi::dtype::Real<T>>();
L
Lijunhui 已提交
388
    auto numel = x.numel();
389
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
390 391
        x.dims(),
        context.GetPlace(),
392
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
393 394 395 396 397 398 399 400

    auto x_dims = x.dims();
    int num_dims = x_dims.size();
    std::vector<int> out_shape;

    for (int i = 0; i < num_dims - 1; ++i) {
      out_shape.push_back(x.dims()[i]);
    }
401
    out.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
    int order = x.dims()[num_dims - 1];
    int stride_out = order * order;
    int stride_in = order + 1;
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < order; ++j) {
        out_data[i * order + j] = x_data[stride_out * i + stride_in * j];
      }
    }
    return out;
  }

  // a complex number x times a real number y, which is represented as (a+0j)
  Tensor RealMulComplex(const Tensor& x, const Tensor& y) {
    framework::Tensor ret;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
417
    ret.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
418 419 420 421 422
    ElementwiseComputeEx<RealMulComplexFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, RealMulComplexFunctor<T>(), &ret);
    return ret;
  }

423 424 425
  framework::Tensor Div(const framework::Tensor& x,
                        const framework::Tensor& y) {
    framework::Tensor ret;
426 427 428 429 430 431 432 433 434 435
    if (x.type() != y.type()) {
      ret.mutable_data<T>(x.dims(), context.GetPlace());
      auto x_vector = EigenVector<T>::Flatten(x);
      auto y_vector = EigenVector<ValueType>::Flatten(y);
      auto out_vector = EigenVector<T>::Flatten(ret);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      out_vector.device(place) = x_vector / y_vector;
    } else {
      std::vector<int> out_shape = GetBroadcastShape({&x, &y});
436
      ret.Resize(phi::make_ddim(out_shape));
437 438 439
      ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
          context, &x, &y, -1, DivFunctor<T>(), &ret);
    }
440
    return ret;
441 442 443
  }
  framework::Tensor Add(const framework::Tensor& x,
                        const framework::Tensor& y) {
444 445
    // element wise add, support numpy broadcast.
    framework::Tensor ret;
446
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
447
    ret.Resize(phi::make_ddim(out_shape));
448 449 450
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, AddFunctor<T>(), &ret);
    return ret;
451 452 453
  }
  framework::Tensor Mul(const framework::Tensor& x,
                        const framework::Tensor& y) {
454
    framework::Tensor ret;
455
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
456
    ret.Resize(phi::make_ddim(out_shape));
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, MulFunctor<T>(), &ret);
    return ret;
  }

  framework::Tensor ReduceSum(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim);
  }

  framework::Tensor ReduceMax(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim);
476
  }
477 478
  // Support float and complex type subtraction,the default is T type
  template <typename InT = T>
479 480
  framework::Tensor Sub(const framework::Tensor& x,
                        const framework::Tensor& y) {
481
    framework::Tensor ret;
482
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
483
    ret.Resize(phi::make_ddim(out_shape));
484 485 486 487
    if (platform::is_gpu_place(context.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      // For GPU, there is no need to define XxxInverseFunctor and call
      // ElementwiseComputeEx in two branches.
488 489
      ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
          context, &x, &y, -1, SubFunctor<InT>(), &ret);
490
#endif
491
    } else {
492
      if (x.dims().size() >= y.dims().size()) {
493 494
        ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, SubFunctor<InT>(), &ret);
495
      } else {
496 497 498 499
        // This is copyed from elementwise_sub, which means we
        // need reverse will xrank < yrank
        ElementwiseComputeEx<InverseSubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, InverseSubFunctor<InT>(), &ret);
500
      }
501 502
    }
    return ret;
503 504 505 506 507
  }
  const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) {
    // don't copy data, only change the dims
    framework::Tensor out;
    out.ShareDataWith(x);
508
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
509 510 511 512 513 514 515
    if (axis >= 0) {
      auto index = (out_shape.begin() + axis);
      out_shape.insert(index, 1);
    } else if (axis < 0) {
      auto index = (out_shape.end() + axis + 1);
      out_shape.insert(index, 1);
    }
516
    out.Resize(phi::make_ddim(out_shape));
517 518
    return out;
  }
519 520
  framework::Tensor Fill(std::vector<int> shape, float fill_value) {
    framework::Tensor ret;
521
    ret.Resize(phi::make_ddim(shape));
522 523
    ret.mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
524
    phi::funcs::SetConstant<DeviceContext, T>()(dev_ctx, &ret, T(fill_value));
525
    return ret;
526
  }
527 528 529
  framework::Tensor Infinits(std::vector<int> shape) {
    auto value = static_cast<T>(std::numeric_limits<double>::infinity());
    return Fill(shape, value);
530
  }
531 532
  framework::Tensor Eye(int n) {
    auto output = Fill({n}, 1);
533 534 535
    auto ret = Diag(output);
    return ret;
  }
536 537 538 539
  framework::Tensor Slice(const framework::Tensor& x,
                          std::vector<int> axes,
                          std::vector<int> starts,
                          std::vector<int> ends) {
540
    framework::Tensor ret;
541
    std::vector<int> new_axes = axes;
542
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
543
    size_t rank = out_shape.size();
544
    PADDLE_ENFORCE_EQ(
545 546
        axes.size(),
        starts.size(),
547 548
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    PADDLE_ENFORCE_EQ(
549 550
        ends.size(),
        starts.size(),
551 552 553 554 555 556 557
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    for (unsigned int i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      if (axis < 0) axis = rank + axis;
      new_axes[i] = axis;  // change negative to positive
      int st = starts[i];
      int ed = ends[i];
558 559
      PADDLE_ENFORCE_GT(ed,
                        st,
560 561 562 563
                        platform::errors::InvalidArgument(
                            "C++ Slice Operation Not Support End < Start"));
      out_shape[axis] = ed - st;
    }
564 565 566 567 568 569 570 571 572
    std::vector<int> offset(rank), extends(rank);
    for (size_t i = 0; i < rank; ++i) {
      offset[i] = 0;
      extends[i] = x.dims()[i];
    }
    for (size_t i = 0; i < new_axes.size(); ++i) {
      offset[new_axes[i]] = starts[i];
      extends[new_axes[i]] = ends[i] - starts[i];
    }
573
    ret.Resize(phi::make_ddim(out_shape));
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_SLICE_RANK_CASE(1);
      DITO_SLICE_RANK_CASE(2);
      DITO_SLICE_RANK_CASE(3);
      DITO_SLICE_RANK_CASE(4);
      DITO_SLICE_RANK_CASE(5);
      DITO_SLICE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
589 590
  }

591 592
  framework::Tensor TrilTriu(const framework::Tensor& x,
                             int diagonal,
593 594 595 596 597 598
                             bool lower) {
    framework::AttributeMap attrs;
    attrs["diagonal"] = diagonal;
    attrs["lower"] = lower;
    NameInTensorMap inputs({{"X", {&x}}});
    int x_rank = x.dims().size();
599
    PADDLE_ENFORCE_GE(
600 601
        x_rank,
        2,
602
        platform::errors::InvalidArgument("Rank must be at least 2."));
603
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
604 605 606
    return CreateOpRunAndReturnTensor("tril_triu", inputs, attrs, out_shape);
  }

607
  framework::Tensor TriangularSolve(const framework::Tensor& x,
608 609 610 611
                                    const framework::Tensor& y,
                                    bool upper,
                                    bool transpose,
                                    bool unitriangular) {
612 613 614 615 616 617 618 619
    framework::AttributeMap attrs;
    attrs["upper"] = upper;
    attrs["transpose"] = transpose;
    attrs["unitriangular"] = unitriangular;
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    auto y_dims_n = y_dims.size();
620 621
    std::vector<int64_t> x_dims_vec = phi::vectorize<int64_t>(x_dims);
    std::vector<int64_t> y_dims_vec = phi::vectorize<int64_t>(y_dims);
622 623 624 625 626 627 628
    std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(),
                                        x_dims_vec.end() - 2);
    std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(),
                                        y_dims_vec.end() - 2);
    std::vector<int64_t> expand_batch_portion =
        get_broadcast_batch_portion(x_dims_vec_cut, y_dims_vec_cut);
    std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
629 630 631
    y_broadcast_dims.insert(
        y_broadcast_dims.end(),
        {y_dims_vec[y_dims_n - 2], y_dims_vec[y_dims_n - 1]});
632 633
    std::vector<int> out_shape(y_broadcast_dims.begin(),
                               y_broadcast_dims.end());
634 635
    return CreateOpRunAndReturnTensor(
        "triangular_solve", inputs, attrs, out_shape);
636 637 638
  }

  framework::Tensor ConcatTwoTensors(const framework::Tensor& x,
639 640
                                     const framework::Tensor& y,
                                     int axis) {
641 642 643 644 645 646 647 648 649 650 651 652
    framework::AttributeMap attrs;
    attrs["axis"] = axis;
    std::vector<framework::DDim> inputs_dims({x.dims(), y.dims()});
    NameInTensorMap inputs({{"X", {&x, &y}}});
    size_t axis_ =
        ComputeAxisForConcatOp(static_cast<int64_t>(axis),
                               static_cast<int64_t>(inputs_dims[0].size()));
    framework::DDim out_dims =
        ComputeAndCheckShapeForConcatOp(true, inputs_dims, axis_);
    if (out_dims[axis_] < 0) {
      out_dims[axis_] = -1;
    }
653
    std::vector<int> out_shape = phi::vectorize<int>(out_dims);
654 655 656
    return CreateOpRunAndReturnTensor("concat", inputs, attrs, out_shape);
  }

657 658 659 660 661
  Tensor Conj(const Tensor& x) {
    Tensor out;
    auto* out_data = out.mutable_data<T>(x.dims(), context.GetPlace());
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(x.numel());
662
    phi::funcs::ConjFunctor<T> functor(x_data, x.numel(), out_data);
663 664 665 666
    for_range(functor);
    return out;
  }

L
Lijunhui 已提交
667 668 669
  Tensor Real(const Tensor& x) {
    Tensor out;
    auto numel = x.numel();
670
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
671 672
        x.dims(),
        context.GetPlace(),
673
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
674 675
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(numel);
676
    phi::funcs::RealFunctor<T> functor(x_data, out_data, numel);
L
Lijunhui 已提交
677 678 679 680
    for_range(functor);
    return out;
  }

681 682 683 684 685
  Tensor DiagFill(const int m,
                  const int n,
                  const int num_lower_diags,
                  const int num_upper_diags,
                  const Tensor& scale,
686 687 688 689 690
                  const Tensor& input) {
    Tensor out;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, input.numel());
    DiagAndFillFunctor<T, ValueType> diag_and_copy_functor(
691 692 693 694 695 696 697
        m,
        n,
        num_lower_diags,
        num_upper_diags,
        scale.data<ValueType>(),
        input.data<T>(),
        out.mutable_data<T>(input.dims(), input.place()));
698 699 700 701
    for_range(diag_and_copy_functor);
    return out;
  }

702 703
 private:
  const framework::ExecutionContext& context;
704 705
  phi::funcs::BlasT<DeviceContext, T> GetBlas() {
    return phi::funcs::GetBlas<DeviceContext, T>(context);
706 707 708 709 710
  }
  platform::ForRange<DeviceContext> GetForRange(int numel) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return platform::ForRange<DeviceContext>(dev_ctx, numel);
  }
711 712 713
  template <size_t D>
  void EigenSliceWrapper(const framework::Tensor* in,
                         const std::vector<int>& start,
714 715
                         const std::vector<int>& end,
                         framework::Tensor* out) {
716 717
    // Slice by call Eigen Tensor Function `.slice()`
    size_t rank = in->dims().size();
718 719
    PADDLE_ENFORCE_EQ(start.size(),
                      rank,
720 721 722
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function start "
                          "argument must have the same length as input rank."));
723 724
    PADDLE_ENFORCE_EQ(end.size(),
                      rank,
725 726 727 728 729 730 731 732 733 734 735 736 737 738
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function end "
                          "argument must have the same length as input rank."));
    auto eigen_place_ptr =
        context.template device_context<DeviceContext>().eigen_device();
    auto eigen_place = *eigen_place_ptr;
    auto out_t = framework::EigenTensor<T, D>::From(*out, out->dims());
    auto in_t = framework::EigenTensor<T, D>::From(*in, in->dims());
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = start[i];
      extents_32bit[i] = end[i];
    }
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
739 740 741 742 743
        eigen_place,
        framework::To32BitIndex(out_t),
        framework::To32BitIndex(in_t),
        offsets_32bit,
        extents_32bit);
744
  }
745
  framework::Tensor CreateOpRunAndReturnTensor(
746 747 748 749
      const std::string& type,
      const NameInTensorMap& inputs,
      const framework::AttributeMap& attrs,
      std::vector<int> out_shape,
750 751 752 753 754 755 756 757 758 759 760
      NameOutTensor out_str = {"Out"}) {
    // varialble set dims must be LoDTensor / SelectedRowTensor
    framework::Scope& local_scope = context.scope().NewScope();
    framework::VariableNameMap op_outputs;
    for (auto out_name : out_str) {
      local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>();
      op_outputs[out_name].emplace_back("tmp_" + out_name);
    }
    auto out_var = local_scope.Var("tmp_Out");  // return the Out
    // create Out Tensor and allocat memory
    out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>(
761 762
        phi::make_ddim(out_shape), context.GetPlace());
    // phi::make_ddim(out_shape)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
    framework::VariableNameMap op_inputs;
    int counter = 0;
    for (auto item : inputs) {
      auto& tensors = item.second;
      std::vector<std::string> name_vector;
      for (auto each_tensor : tensors) {
        // create score variable and reset the tensor.
        std::string _name = "tmp" + std::to_string(counter++);
        auto in_var = local_scope.Var(_name);  // create
        framework::LoDTensor tmp_tns;
        tmp_tns.ShareDataWith(*each_tensor);  // tensor -> lodtensor
        (*in_var->GetMutable<framework::LoDTensor>()) =
            tmp_tns;  // initialize and set value
        name_vector.emplace_back(_name);
      }
      op_inputs[item.first] = name_vector;
    }
780

781 782 783 784 785
    auto op =
        framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
    op->Run(local_scope, context.GetPlace());
    framework::Tensor out;
    out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>()));
786
    out.Resize(phi::make_ddim(out_shape));
787 788 789 790 791 792 793
    context.scope().DeleteScope(&local_scope);
    return out;
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle