svd_helper.h 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17 18 19 20 21 22 23
#include <Eigen/src/Core/util/Constants.h>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
24 25 26
#include "paddle/fluid/operators/diag_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"

namespace paddle {
namespace operators {
namespace math {
using Tensor = framework::Tensor;
using InTensors = std::vector<const Tensor*>;
using OutTensors = std::vector<Tensor*>;
using OpName = std::string;

template <typename T>
void EigenSvd(const T* X, T* U, T* VH, T* S, int rows, int cols,
              int full = false) {
  auto flag = Eigen::DecompositionOptions::ComputeThinU |
              Eigen::DecompositionOptions::ComputeThinV;
  if (full) {
    flag = Eigen::DecompositionOptions::ComputeFullU |
           Eigen::DecompositionOptions::ComputeFullV;
  }
  Eigen::BDCSVD<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
      svd(2, 2, flag);
  /*NOTE(xiongkun03) Eigen::Matrix API need non-const pointer.*/
  T* input = const_cast<T*>(X);
  auto m = Eigen::Map<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
      input, rows, cols);
  svd.compute(m);
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> V_trans =
      svd.matrixV().transpose();
  memcpy(U, svd.matrixU().data(), svd.matrixU().size() * sizeof(T));
  memcpy(VH, V_trans.data(), V_trans.size() * sizeof(T));
  memcpy(S, svd.singularValues().data(),
         svd.singularValues().size() * sizeof(T));
}

template <typename T>
void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches,
              int full = false) {
  int stride = rows * cols;
  int k = std::min(rows, cols);
  int stride_u = full ? rows * rows : k * rows;
  int stride_v = full ? cols * cols : k * cols;
  for (int i = 0; i < batches; ++i) {
    EigenSvd<T>(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k,
                rows, cols, full);
  }
  return;
}

template <typename T>
struct PowFunctor {
  PowFunctor(const T* input, T* output, int64_t numel, float exp)
      : input_(input), output_(output), numel_(numel), exp_(exp) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    output_[idx] = pow(input_[idx], exp_);
  }
  const T* input_;
  T* output_;
  int64_t numel_;
  float exp_;
};

static std::vector<int> GetBroadcastShape(InTensors ins) {
  PADDLE_ENFORCE_EQ(ins.size(), 2, platform::errors::InvalidArgument(
                                       "GetBroadcastShape Receive 2 tensors"
                                       "but got [%d]",
                                       ins.size()));
  auto x_dim = ins[0]->dims();
  auto y_dim = ins[1]->dims();
  std::vector<int> broadcast_shape =
      (x_dim.size() > y_dim.size() ? framework::vectorize<int>(x_dim)
                                   : framework::vectorize<int>(y_dim));
  int rank_min = std::min(x_dim.size(), y_dim.size());
  int rank_x = x_dim.size();
  int rank_y = y_dim.size();
  int final_rank = broadcast_shape.size();
  for (int i = 1; i <= rank_min; ++i) {
    if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    if (x_dim[rank_x - i] == 1) {
      broadcast_shape[final_rank - i] = y_dim[rank_y - i];
      continue;
    }
    if (y_dim[rank_y - i] == 1) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Wrong Input Shape in broadcast operator: "
        "Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
        "shape, but received [%s] (X) vs [%s] (Y).",
        x_dim, y_dim));
  }
  return broadcast_shape;
}

130 131 132 133 134 135 136 137 138 139 140 141 142
#define DITO_TRANSPOSE_RANK_CASE(N)             \
  case N: {                                     \
    math::Transpose<DeviceContext, T, N> trans; \
    trans(dev_ctx, x, &ret, axis);              \
    break;                                      \
  }

#define DITO_SLICE_RANK_CASE(N)                      \
  case N: {                                          \
    EigenSliceWrapper<N>(&x, offset, extends, &ret); \
    break;                                           \
  }

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
template <typename DeviceContext, typename T>
struct DeviceIndependenceTensorOperations {
  // 1. Device indenpendence, for kernel reuse.
  // 2. Input and output is always tensor type.
  // 3. output Tensor is alway allocated
  // 4. Basic Tensor operator is supported
  // 5. The Reused Operator Kernel should only be considered as
  //    a wrap function
  using NameInTensorMap =
      std::map<std::string, std::vector<const framework::Tensor*>>;
  using NameOutTensor = std::vector<std::string>;

  explicit DeviceIndependenceTensorOperations(
      const framework::ExecutionContext& context)
      : context(context) {}

  framework::Tensor Pow(const framework::Tensor& x, float exp) {
    framework::Tensor out;
    auto for_range = GetForRange(x.numel());
    int numel = x.numel();
    PowFunctor<T> functor(x.data<T>(), out.mutable_data<T>(x.dims(), x.place()),
                          numel, exp);
    for_range(functor);
    return out;
  }
  framework::Tensor Matmul(const framework::Tensor& mat_a,
                           const framework::Tensor& mat_b, bool trans_a = false,
                           bool trans_b = false) {
171
    framework::Tensor ret;
172 173 174 175 176
    auto a_dim = mat_a.dims();
    auto b_dim = mat_b.dims();
    std::vector<int> x_vec = framework::vectorize<int>(a_dim);
    x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
    x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
177 178 179 180 181 182 183 184
    ret.Resize(framework::make_ddim(x_vec));
    ret.mutable_data<T>(context.GetPlace());
    auto blas = GetBlas();
    auto mat_a_discrib = math::CreateMatrixDescriptor(a_dim, 0, trans_a);
    auto mat_b_discrib = math::CreateMatrixDescriptor(b_dim, 0, trans_b);
    blas.MatMul(mat_a, mat_a_discrib, mat_b, mat_b_discrib, T(1.0), &ret,
                T(0.0));
    return ret;
185
  }
186

187
  framework::Tensor Transpose(const framework::Tensor& x) {
188 189
    // transpose the last two dimision
    framework::Tensor ret;
190 191 192 193 194 195 196 197 198 199
    auto x_dim = x.dims();
    auto x_vec = framework::vectorize<int>(x_dim);
    int rank = x_vec.size();
    std::swap(x_vec[rank - 1], x_vec[rank - 2]);
    std::vector<int> out_shape = x_vec;
    std::vector<int> axis(rank);
    for (int i = 0; i < rank; ++i) {
      axis[i] = i;
    }
    std::swap(axis[rank - 1], axis[rank - 2]);
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    auto& dev_ctx = context.template device_context<DeviceContext>();
    ret.Resize(framework::make_ddim(x_vec));
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_TRANSPOSE_RANK_CASE(2);
      DITO_TRANSPOSE_RANK_CASE(3);
      DITO_TRANSPOSE_RANK_CASE(4);
      DITO_TRANSPOSE_RANK_CASE(5);
      DITO_TRANSPOSE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
216 217
  }
  framework::Tensor Diag(const framework::Tensor& x, int offset = 0,
218
                         // FIXME  link error
219
                         int padding_value = 0) {
220 221 222 223 224 225 226 227 228
    PADDLE_ENFORCE_EQ(padding_value, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support padding_value = 0"));
    PADDLE_ENFORCE_EQ(offset, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support offset = 0,"
                          "you can use DiagOp instead(not recommend)"));

    framework::Tensor ret;
229 230 231
    int x_rank = x.dims().size();
    std::vector<int> out_shape;
    if (x_rank == 2) {
232 233 234 235
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Current diag only support vector"
          "-> diagonalized matrix, not support matrix -> vector,"
          " Use DiagOp instead."));
236 237 238 239 240 241 242
    } else if (x_rank == 1) {
      out_shape.push_back(x.dims()[0]);
      out_shape.push_back(x.dims()[0]);
    } else {
      PADDLE_THROW(
          platform::errors::InvalidArgument("Rank must less or equal than 2"));
    }
243 244 245 246 247 248 249 250 251 252 253 254 255 256
    ret = Fill({out_shape[0], out_shape[0]}, 0.0);
    T* output = ret.mutable_data<T>(context.GetPlace());
    auto for_range = GetForRange(x.numel());
    for_range(DiagFunctor<T>(x.data<T>(), x.numel(), output));
    return ret;
  }
  framework::Tensor Div(const framework::Tensor& x,
                        const framework::Tensor& y) {
    framework::Tensor ret;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
    ret.Resize(framework::make_ddim(out_shape));
    ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, DivFunctor<T>(), &ret);
    return ret;
257 258 259
  }
  framework::Tensor Add(const framework::Tensor& x,
                        const framework::Tensor& y) {
260 261
    // element wise add, support numpy broadcast.
    framework::Tensor ret;
262
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
263 264 265 266
    ret.Resize(framework::make_ddim(out_shape));
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, AddFunctor<T>(), &ret);
    return ret;
267 268 269
  }
  framework::Tensor Mul(const framework::Tensor& x,
                        const framework::Tensor& y) {
270
    framework::Tensor ret;
271
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
    ret.Resize(framework::make_ddim(out_shape));
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, MulFunctor<T>(), &ret);
    return ret;
  }

  framework::Tensor ReduceSum(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim);
  }

  framework::Tensor ReduceMax(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim);
292 293 294 295
  }

  framework::Tensor Sub(const framework::Tensor& x,
                        const framework::Tensor& y) {
296
    framework::Tensor ret;
297
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
298
    ret.Resize(framework::make_ddim(out_shape));
299 300 301 302
    if (platform::is_gpu_place(context.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      // For GPU, there is no need to define XxxInverseFunctor and call
      // ElementwiseComputeEx in two branches.
303 304
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          context, &x, &y, -1, SubFunctor<T>(), &ret);
305
#endif
306
    } else {
307 308 309 310 311 312 313 314 315
      if (x.dims().size() >= y.dims().size()) {
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            context, &x, &y, -1, SubFunctor<T>(), &ret);
      } else {
        ElementwiseComputeEx<InverseSubFunctor<T>, DeviceContext, T>(
            // This is copyed from elementwise_sub, which means we
            // need reverse will xrank < yrank
            context, &x, &y, -1, InverseSubFunctor<T>(), &ret);
      }
316 317
    }
    return ret;
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
  }
  const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) {
    // don't copy data, only change the dims
    framework::Tensor out;
    out.ShareDataWith(x);
    std::vector<int> out_shape = framework::vectorize<int>(x.dims());
    if (axis >= 0) {
      auto index = (out_shape.begin() + axis);
      out_shape.insert(index, 1);
    } else if (axis < 0) {
      auto index = (out_shape.end() + axis + 1);
      out_shape.insert(index, 1);
    }
    out.Resize(framework::make_ddim(out_shape));
    return out;
  }
334 335 336 337 338 339 340
  framework::Tensor Fill(std::vector<int> shape, float fill_value) {
    framework::Tensor ret;
    ret.Resize(framework::make_ddim(shape));
    ret.mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
    SetConstant<DeviceContext, T>()(dev_ctx, &ret, T(fill_value));
    return ret;
341
  }
342 343 344
  framework::Tensor Infinits(std::vector<int> shape) {
    auto value = static_cast<T>(std::numeric_limits<double>::infinity());
    return Fill(shape, value);
345
  }
346 347
  framework::Tensor Eye(int n) {
    auto output = Fill({n}, 1);
348 349 350 351 352
    auto ret = Diag(output);
    return ret;
  }
  framework::Tensor Slice(const framework::Tensor& x, std::vector<int> axes,
                          std::vector<int> starts, std::vector<int> ends) {
353
    framework::Tensor ret;
354 355
    std::vector<int> new_axes = axes;
    std::vector<int> out_shape = framework::vectorize<int>(x.dims());
356
    size_t rank = out_shape.size();
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    PADDLE_ENFORCE_EQ(
        axes.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    PADDLE_ENFORCE_EQ(
        ends.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    for (unsigned int i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      if (axis < 0) axis = rank + axis;
      new_axes[i] = axis;  // change negative to positive
      int st = starts[i];
      int ed = ends[i];
      PADDLE_ENFORCE_GT(ed, st,
                        platform::errors::InvalidArgument(
                            "C++ Slice Operation Not Support End < Start"));
      out_shape[axis] = ed - st;
    }
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    std::vector<int> offset(rank), extends(rank);
    for (size_t i = 0; i < rank; ++i) {
      offset[i] = 0;
      extends[i] = x.dims()[i];
    }
    for (size_t i = 0; i < new_axes.size(); ++i) {
      offset[new_axes[i]] = starts[i];
      extends[new_axes[i]] = ends[i] - starts[i];
    }
    ret.Resize(framework::make_ddim(out_shape));
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_SLICE_RANK_CASE(1);
      DITO_SLICE_RANK_CASE(2);
      DITO_SLICE_RANK_CASE(3);
      DITO_SLICE_RANK_CASE(4);
      DITO_SLICE_RANK_CASE(5);
      DITO_SLICE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
399 400
  }

401 402 403 404 405 406 407 408 409
 private:
  const framework::ExecutionContext& context;
  BlasT<DeviceContext, T> GetBlas() {
    return math::GetBlas<DeviceContext, T>(context);
  }
  platform::ForRange<DeviceContext> GetForRange(int numel) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return platform::ForRange<DeviceContext>(dev_ctx, numel);
  }
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  template <size_t D>
  void EigenSliceWrapper(const framework::Tensor* in,
                         const std::vector<int>& start,
                         const std::vector<int>& end, framework::Tensor* out) {
    // Slice by call Eigen Tensor Function `.slice()`
    size_t rank = in->dims().size();
    PADDLE_ENFORCE_EQ(start.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function start "
                          "argument must have the same length as input rank."));
    PADDLE_ENFORCE_EQ(end.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function end "
                          "argument must have the same length as input rank."));
    auto eigen_place_ptr =
        context.template device_context<DeviceContext>().eigen_device();
    auto eigen_place = *eigen_place_ptr;
    auto out_t = framework::EigenTensor<T, D>::From(*out, out->dims());
    auto in_t = framework::EigenTensor<T, D>::From(*in, in->dims());
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = start[i];
      extents_32bit[i] = end[i];
    }
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, framework::To32BitIndex(out_t),
        framework::To32BitIndex(in_t), offsets_32bit, extents_32bit);
  }
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
  framework::Tensor CreateOpRunAndReturnTensor(
      const std::string& type, const NameInTensorMap& inputs,
      const framework::AttributeMap& attrs, std::vector<int> out_shape,
      NameOutTensor out_str = {"Out"}) {
    // varialble set dims must be LoDTensor / SelectedRowTensor
    framework::Scope& local_scope = context.scope().NewScope();
    framework::VariableNameMap op_outputs;
    for (auto out_name : out_str) {
      local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>();
      op_outputs[out_name].emplace_back("tmp_" + out_name);
    }
    auto out_var = local_scope.Var("tmp_Out");  // return the Out
    // create Out Tensor and allocat memory
    out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>(
        framework::make_ddim(out_shape), context.GetPlace());
    // framework::make_ddim(out_shape)
    framework::VariableNameMap op_inputs;
    int counter = 0;
    for (auto item : inputs) {
      auto& tensors = item.second;
      std::vector<std::string> name_vector;
      for (auto each_tensor : tensors) {
        // create score variable and reset the tensor.
        std::string _name = "tmp" + std::to_string(counter++);
        auto in_var = local_scope.Var(_name);  // create
        framework::LoDTensor tmp_tns;
        tmp_tns.ShareDataWith(*each_tensor);  // tensor -> lodtensor
        (*in_var->GetMutable<framework::LoDTensor>()) =
            tmp_tns;  // initialize and set value
        name_vector.emplace_back(_name);
      }
      op_inputs[item.first] = name_vector;
    }
471

472 473 474 475 476 477 478 479 480 481 482 483 484
    auto op =
        framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
    op->Run(local_scope, context.GetPlace());
    framework::Tensor out;
    out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>()));
    out.Resize(framework::make_ddim(out_shape));
    context.scope().DeleteScope(&local_scope);
    return out;
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle