svd_helper.h 29.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

17
#include <Eigen/src/Core/util/Constants.h>
18

19 20 21
#include <Eigen/Dense>
#include <Eigen/SVD>
#include <iostream>
22

23 24
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
25 26 27
#include "paddle/fluid/operators/diag_op.h"
#include "paddle/fluid/operators/eigen/eigen_function.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
28 29
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/for_range.h"
30 31 32 33
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/complex_functors.h"
#include "paddle/phi/kernels/funcs/math_function.h"
34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {
namespace math {
using Tensor = framework::Tensor;
using InTensors = std::vector<const Tensor*>;
using OutTensors = std::vector<Tensor*>;
using OpName = std::string;
42 43 44
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

template <typename T>
void EigenSvd(const T* X, T* U, T* VH, T* S, int rows, int cols,
              int full = false) {
  auto flag = Eigen::DecompositionOptions::ComputeThinU |
              Eigen::DecompositionOptions::ComputeThinV;
  if (full) {
    flag = Eigen::DecompositionOptions::ComputeFullU |
           Eigen::DecompositionOptions::ComputeFullV;
  }
  Eigen::BDCSVD<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
      svd(2, 2, flag);
  /*NOTE(xiongkun03) Eigen::Matrix API need non-const pointer.*/
  T* input = const_cast<T*>(X);
  auto m = Eigen::Map<
      Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>(
      input, rows, cols);
  svd.compute(m);
  Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> V_trans =
      svd.matrixV().transpose();
  memcpy(U, svd.matrixU().data(), svd.matrixU().size() * sizeof(T));
  memcpy(VH, V_trans.data(), V_trans.size() * sizeof(T));
  memcpy(S, svd.singularValues().data(),
         svd.singularValues().size() * sizeof(T));
}

template <typename T>
void BatchSvd(const T* X, T* U, T* VH, T* S, int rows, int cols, int batches,
              int full = false) {
  int stride = rows * cols;
  int k = std::min(rows, cols);
  int stride_u = full ? rows * rows : k * rows;
  int stride_v = full ? cols * cols : k * cols;
  for (int i = 0; i < batches; ++i) {
    EigenSvd<T>(X + i * stride, U + i * stride_u, VH + i * stride_v, S + i * k,
                rows, cols, full);
  }
  return;
}

template <typename T>
struct PowFunctor {
88
  PowFunctor(const T* input, T* output, int64_t numel, T exp)
89 90 91 92 93 94 95 96
      : input_(input), output_(output), numel_(numel), exp_(exp) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    output_[idx] = pow(input_[idx], exp_);
  }
  const T* input_;
  T* output_;
  int64_t numel_;
97
  T exp_;
98 99
};

L
Lijunhui 已提交
100 101 102 103 104 105
template <typename T>
struct RealMulComplexFunctor {
  // x: complex number (a+bj)
  // y: complex number (c+0j) pretend to be a real number
  // out: complex number (ac+bcj)
  inline HOSTDEVICE T operator()(T x, T y) {
106 107 108 109 110
    PADDLE_ENFORCE_LT(
        y.imag, 1e-6,
        platform::errors::InvalidArgument("The image part of y must to be 0"
                                          "but got [%d]",
                                          y.imag));
111
    return platform::complex<phi::dtype::Real<T>>(x.real * y.real,
112
                                                  x.imag * y.real);
L
Lijunhui 已提交
113 114 115
  }
};

116
static std::vector<int> GetBroadcastShape(InTensors ins) {
117 118 119 120 121
  PADDLE_ENFORCE_EQ(
      ins.size(), 2,
      platform::errors::InvalidArgument("GetBroadcastShape Receive 2 tensors"
                                        "but got [%d]",
                                        ins.size()));
122 123 124
  auto x_dim = ins[0]->dims();
  auto y_dim = ins[1]->dims();
  std::vector<int> broadcast_shape =
125 126
      (x_dim.size() > y_dim.size() ? phi::vectorize<int>(x_dim)
                                   : phi::vectorize<int>(y_dim));
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
  int rank_min = std::min(x_dim.size(), y_dim.size());
  int rank_x = x_dim.size();
  int rank_y = y_dim.size();
  int final_rank = broadcast_shape.size();
  for (int i = 1; i <= rank_min; ++i) {
    if (x_dim[rank_x - i] == y_dim[rank_y - i]) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    if (x_dim[rank_x - i] == 1) {
      broadcast_shape[final_rank - i] = y_dim[rank_y - i];
      continue;
    }
    if (y_dim[rank_y - i] == 1) {
      broadcast_shape[final_rank - i] = x_dim[rank_x - i];
      continue;
    }
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Wrong Input Shape in broadcast operator: "
        "Input(X)'s shape must follow the broadcast rule with Input(Y)'s "
        "shape, but received [%s] (X) vs [%s] (Y).",
        x_dim, y_dim));
  }
  return broadcast_shape;
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static inline framework::DDim ComputeAndCheckShapeForConcatOp(
    const bool is_runtime, const std::vector<framework::DDim>& inputs_dims,
    const size_t axis) {
  const size_t n = inputs_dims.size();
  auto out_dims = inputs_dims[0];
  size_t in_zero_dims_size = out_dims.size();
  for (size_t i = 1; i < n; i++) {
    PADDLE_ENFORCE_EQ(inputs_dims[i].size(), out_dims.size(),
                      platform::errors::InvalidArgument(
                          "The shape of input[0] and input[%d] "
                          "is expected to be equal."
                          "But received input[0]'s shape = "
                          "[%s], input[%d]'s shape = [%s].",
                          i, inputs_dims[0], i, inputs_dims[i]));
    for (size_t j = 0; j < in_zero_dims_size; j++) {
      if (j == axis) {
        if (is_runtime) {
          out_dims[axis] += inputs_dims[i][j];
        } else {
          if (inputs_dims[i][j] == -1 || out_dims[j] == -1) {
            out_dims[axis] = -1;
          } else {
            out_dims[axis] += inputs_dims[i][j];
          }
        }
      } else {
        bool check_shape =
            is_runtime || (inputs_dims[0][j] > 0 && inputs_dims[i][j] > 0);
        if (check_shape) {
          // check all shape in run time
          PADDLE_ENFORCE_EQ(inputs_dims[0][j], inputs_dims[i][j],
                            platform::errors::InvalidArgument(
                                "The %d-th dimension of input[0] and input[%d] "
                                "is expected to be equal."
                                "But received input[0]'s shape = "
                                "[%s], input[%d]'s shape = [%s].",
                                j, i, inputs_dims[0], i, inputs_dims[i]));
        }
        if (!is_runtime && out_dims[j] == -1 && inputs_dims[i][j] > 0) {
          out_dims[j] = inputs_dims[i][j];
        }
      }
    }
  }
  return out_dims;
}

static inline int64_t ComputeAxisForConcatOp(int64_t axis, int64_t rank) {
  PADDLE_ENFORCE_EQ(
      axis >= -rank && axis < rank, true,
      platform::errors::InvalidArgument(
          "The axis is expected to be in range of [%d, %d), but got %d", -rank,
          rank, axis));
  if (axis < 0) {
    axis = axis + rank;
  }
  return axis > 0 ? axis : 0;
}

// Prepared for the broadcast operation
static std::vector<int64_t> get_broadcast_batch_portion(
    std::vector<int64_t> x, std::vector<int64_t> y) {
  size_t size_x = x.size();
  size_t size_y = y.size();
  size_t size = std::max(size_x, size_y);
  std::vector<int64_t> batchPortion(size);

  ptrdiff_t i = (ptrdiff_t)size - 1;
  for (; i >= 0; --i) {
    ptrdiff_t offset = size - i - 1;
    ptrdiff_t dim_x = size_x - offset - 1;
    ptrdiff_t dim_y = size_y - offset - 1;
    int64_t x_size = (dim_x >= 0) ? x[dim_x] : 1;
    int64_t y_size = (dim_y >= 0) ? y[dim_y] : 1;

    PADDLE_ENFORCE_EQ(
        (x_size == y_size || x_size == 1 || y_size == 1), true,
        platform::errors::PreconditionNotMet(
            "The size of tensor x (%d) must match the size of tensor y "
            "(%d) at non-singleton dimension %d.",
            x_size, y_size, i));

    batchPortion[i] = x_size != 1 ? x_size : y_size;
  }
  return batchPortion;
}

240 241 242 243 244
#define DITO_TRANSPOSE_RANK_CASE(N)                   \
  case N: {                                           \
    phi::funcs::Transpose<DeviceContext, T, N> trans; \
    trans(dev_ctx, x, &ret, axis);                    \
    break;                                            \
245 246 247 248 249 250 251 252
  }

#define DITO_SLICE_RANK_CASE(N)                      \
  case N: {                                          \
    EigenSliceWrapper<N>(&x, offset, extends, &ret); \
    break;                                           \
  }

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
template <typename T, typename ValueType>
struct DiagAndFillFunctor {
  DiagAndFillFunctor(const int m, const int n, const int num_lower_diags,
                     const int num_upper_diags, const ValueType* scale,
                     const T* input, T* output)
      : m_(m),
        n_(n),
        num_lower_diags_(num_lower_diags),
        num_upper_diags_(num_upper_diags),
        scale_(scale),
        input_(input),
        output_(output) {}

  HOSTDEVICE void operator()(size_t index) const {
    const int col = index % n_;
    const int row = (index / n_) % m_;
    const int band_start = (num_lower_diags_ < 0 ? 0 : row - num_lower_diags_);
    const int band_end =
        (num_upper_diags_ < 0 ? n_ : row + num_upper_diags_ + 1);
    if (col < band_start || col >= band_end) {
      output_[index] = input_[index];
    } else if (col == band_end - 1) {
      output_[index] = static_cast<T>(scale_[index % m_]);
    } else {
      output_[index] = input_[index];
    }
  }

 private:
  const int m_, n_, num_lower_diags_, num_upper_diags_;
  const ValueType* scale_;
  const T* input_;
  T* output_;
};

template <typename DeviceContext, typename T, typename ValueType = T>
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
struct DeviceIndependenceTensorOperations {
  // 1. Device indenpendence, for kernel reuse.
  // 2. Input and output is always tensor type.
  // 3. output Tensor is alway allocated
  // 4. Basic Tensor operator is supported
  // 5. The Reused Operator Kernel should only be considered as
  //    a wrap function
  using NameInTensorMap =
      std::map<std::string, std::vector<const framework::Tensor*>>;
  using NameOutTensor = std::vector<std::string>;

  explicit DeviceIndependenceTensorOperations(
      const framework::ExecutionContext& context)
      : context(context) {}

304
  framework::Tensor Pow(const framework::Tensor& x, T exp) {
305 306 307 308 309 310 311 312 313 314 315
    framework::Tensor out;
    auto for_range = GetForRange(x.numel());
    int numel = x.numel();
    PowFunctor<T> functor(x.data<T>(), out.mutable_data<T>(x.dims(), x.place()),
                          numel, exp);
    for_range(functor);
    return out;
  }
  framework::Tensor Matmul(const framework::Tensor& mat_a,
                           const framework::Tensor& mat_b, bool trans_a = false,
                           bool trans_b = false) {
316
    framework::Tensor ret;
317 318
    auto a_dim = mat_a.dims();
    auto b_dim = mat_b.dims();
319
    std::vector<int> x_vec = phi::vectorize<int>(a_dim);
320 321
    x_vec[x_vec.size() - 2] = a_dim[a_dim.size() - (trans_a ? 1 : 2)];
    x_vec[x_vec.size() - 1] = b_dim[b_dim.size() - (trans_b ? 2 : 1)];
322
    ret.Resize(phi::make_ddim(x_vec));
323 324
    ret.mutable_data<T>(context.GetPlace());
    auto blas = GetBlas();
325 326
    auto mat_a_discrib = phi::funcs::CreateMatrixDescriptor(a_dim, 0, trans_a);
    auto mat_b_discrib = phi::funcs::CreateMatrixDescriptor(b_dim, 0, trans_b);
327 328 329
    blas.MatMul(mat_a, mat_a_discrib, mat_b, mat_b_discrib, T(1.0), &ret,
                T(0.0));
    return ret;
330
  }
331

332
  framework::Tensor Transpose(const framework::Tensor& x) {
333 334
    // transpose the last two dimision
    framework::Tensor ret;
335
    auto x_dim = x.dims();
336
    auto x_vec = phi::vectorize<int>(x_dim);
337 338 339 340 341 342 343 344
    int rank = x_vec.size();
    std::swap(x_vec[rank - 1], x_vec[rank - 2]);
    std::vector<int> out_shape = x_vec;
    std::vector<int> axis(rank);
    for (int i = 0; i < rank; ++i) {
      axis[i] = i;
    }
    std::swap(axis[rank - 1], axis[rank - 2]);
345
    auto& dev_ctx = context.template device_context<DeviceContext>();
346
    ret.Resize(phi::make_ddim(x_vec));
347 348 349 350 351 352 353 354 355 356 357 358 359 360
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_TRANSPOSE_RANK_CASE(2);
      DITO_TRANSPOSE_RANK_CASE(3);
      DITO_TRANSPOSE_RANK_CASE(4);
      DITO_TRANSPOSE_RANK_CASE(5);
      DITO_TRANSPOSE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
361 362
  }
  framework::Tensor Diag(const framework::Tensor& x, int offset = 0,
363
                         // FIXME  link error
364
                         int padding_value = 0) {
365 366 367 368 369 370 371 372 373
    PADDLE_ENFORCE_EQ(padding_value, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support padding_value = 0"));
    PADDLE_ENFORCE_EQ(offset, 0,
                      platform::errors::InvalidArgument(
                          "Current diag only support offset = 0,"
                          "you can use DiagOp instead(not recommend)"));

    framework::Tensor ret;
374 375 376
    int x_rank = x.dims().size();
    std::vector<int> out_shape;
    if (x_rank == 2) {
377 378 379 380
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Current diag only support vector"
          "-> diagonalized matrix, not support matrix -> vector,"
          " Use DiagOp instead."));
381 382 383 384 385 386 387
    } else if (x_rank == 1) {
      out_shape.push_back(x.dims()[0]);
      out_shape.push_back(x.dims()[0]);
    } else {
      PADDLE_THROW(
          platform::errors::InvalidArgument("Rank must less or equal than 2"));
    }
388 389 390 391 392 393
    ret = Fill({out_shape[0], out_shape[0]}, 0.0);
    T* output = ret.mutable_data<T>(context.GetPlace());
    auto for_range = GetForRange(x.numel());
    for_range(DiagFunctor<T>(x.data<T>(), x.numel(), output));
    return ret;
  }
L
Lijunhui 已提交
394 395 396 397

  // batch_diag for CPU only
  Tensor BatchDiag(const Tensor& x, int batch) {
    Tensor out;
398
    auto* x_data = x.data<phi::dtype::Real<T>>();
L
Lijunhui 已提交
399
    auto numel = x.numel();
400
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
L
Lijunhui 已提交
401
        x.dims(), context.GetPlace(),
402
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
403 404 405 406 407 408 409 410

    auto x_dims = x.dims();
    int num_dims = x_dims.size();
    std::vector<int> out_shape;

    for (int i = 0; i < num_dims - 1; ++i) {
      out_shape.push_back(x.dims()[i]);
    }
411
    out.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
    int order = x.dims()[num_dims - 1];
    int stride_out = order * order;
    int stride_in = order + 1;
    for (int i = 0; i < batch; ++i) {
      for (int j = 0; j < order; ++j) {
        out_data[i * order + j] = x_data[stride_out * i + stride_in * j];
      }
    }
    return out;
  }

  // a complex number x times a real number y, which is represented as (a+0j)
  Tensor RealMulComplex(const Tensor& x, const Tensor& y) {
    framework::Tensor ret;
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
427
    ret.Resize(phi::make_ddim(out_shape));
L
Lijunhui 已提交
428 429 430 431 432
    ElementwiseComputeEx<RealMulComplexFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, RealMulComplexFunctor<T>(), &ret);
    return ret;
  }

433 434 435
  framework::Tensor Div(const framework::Tensor& x,
                        const framework::Tensor& y) {
    framework::Tensor ret;
436 437 438 439 440 441 442 443 444 445
    if (x.type() != y.type()) {
      ret.mutable_data<T>(x.dims(), context.GetPlace());
      auto x_vector = EigenVector<T>::Flatten(x);
      auto y_vector = EigenVector<ValueType>::Flatten(y);
      auto out_vector = EigenVector<T>::Flatten(ret);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      out_vector.device(place) = x_vector / y_vector;
    } else {
      std::vector<int> out_shape = GetBroadcastShape({&x, &y});
446
      ret.Resize(phi::make_ddim(out_shape));
447 448 449
      ElementwiseComputeEx<DivFunctor<T>, DeviceContext, T>(
          context, &x, &y, -1, DivFunctor<T>(), &ret);
    }
450
    return ret;
451 452 453
  }
  framework::Tensor Add(const framework::Tensor& x,
                        const framework::Tensor& y) {
454 455
    // element wise add, support numpy broadcast.
    framework::Tensor ret;
456
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
457
    ret.Resize(phi::make_ddim(out_shape));
458 459 460
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, AddFunctor<T>(), &ret);
    return ret;
461 462 463
  }
  framework::Tensor Mul(const framework::Tensor& x,
                        const framework::Tensor& y) {
464
    framework::Tensor ret;
465
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
466
    ret.Resize(phi::make_ddim(out_shape));
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
        context, &x, &y, -1, MulFunctor<T>(), &ret);
    return ret;
  }

  framework::Tensor ReduceSum(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_sum", inputs, attrs, out_dim);
  }

  framework::Tensor ReduceMax(const framework::Tensor& x,
                              std::vector<int> out_dim) {
    framework::AttributeMap attrs;
    attrs["dim"] = std::vector<int>{-1};
    NameInTensorMap inputs({{"X", {&x}}});
    return CreateOpRunAndReturnTensor("reduce_max", inputs, attrs, out_dim);
486
  }
487 488
  // Support float and complex type subtraction,the default is T type
  template <typename InT = T>
489 490
  framework::Tensor Sub(const framework::Tensor& x,
                        const framework::Tensor& y) {
491
    framework::Tensor ret;
492
    std::vector<int> out_shape = GetBroadcastShape({&x, &y});
493
    ret.Resize(phi::make_ddim(out_shape));
494 495 496 497
    if (platform::is_gpu_place(context.GetPlace())) {
#if defined(__NVCC__) || defined(__HIPCC__)
      // For GPU, there is no need to define XxxInverseFunctor and call
      // ElementwiseComputeEx in two branches.
498 499
      ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
          context, &x, &y, -1, SubFunctor<InT>(), &ret);
500
#endif
501
    } else {
502
      if (x.dims().size() >= y.dims().size()) {
503 504
        ElementwiseComputeEx<SubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, SubFunctor<InT>(), &ret);
505
      } else {
506 507 508 509
        // This is copyed from elementwise_sub, which means we
        // need reverse will xrank < yrank
        ElementwiseComputeEx<InverseSubFunctor<InT>, DeviceContext, InT>(
            context, &x, &y, -1, InverseSubFunctor<InT>(), &ret);
510
      }
511 512
    }
    return ret;
513 514 515 516 517
  }
  const framework::Tensor Unsqueeze(const framework::Tensor& x, int axis = 0) {
    // don't copy data, only change the dims
    framework::Tensor out;
    out.ShareDataWith(x);
518
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
519 520 521 522 523 524 525
    if (axis >= 0) {
      auto index = (out_shape.begin() + axis);
      out_shape.insert(index, 1);
    } else if (axis < 0) {
      auto index = (out_shape.end() + axis + 1);
      out_shape.insert(index, 1);
    }
526
    out.Resize(phi::make_ddim(out_shape));
527 528
    return out;
  }
529 530
  framework::Tensor Fill(std::vector<int> shape, float fill_value) {
    framework::Tensor ret;
531
    ret.Resize(phi::make_ddim(shape));
532 533
    ret.mutable_data<T>(context.GetPlace());
    auto& dev_ctx = context.template device_context<DeviceContext>();
534
    phi::funcs::SetConstant<DeviceContext, T>()(dev_ctx, &ret, T(fill_value));
535
    return ret;
536
  }
537 538 539
  framework::Tensor Infinits(std::vector<int> shape) {
    auto value = static_cast<T>(std::numeric_limits<double>::infinity());
    return Fill(shape, value);
540
  }
541 542
  framework::Tensor Eye(int n) {
    auto output = Fill({n}, 1);
543 544 545 546 547
    auto ret = Diag(output);
    return ret;
  }
  framework::Tensor Slice(const framework::Tensor& x, std::vector<int> axes,
                          std::vector<int> starts, std::vector<int> ends) {
548
    framework::Tensor ret;
549
    std::vector<int> new_axes = axes;
550
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
551
    size_t rank = out_shape.size();
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    PADDLE_ENFORCE_EQ(
        axes.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    PADDLE_ENFORCE_EQ(
        ends.size(), starts.size(),
        platform::errors::InvalidArgument("Slice Operator Argument Invalided"));
    for (unsigned int i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      if (axis < 0) axis = rank + axis;
      new_axes[i] = axis;  // change negative to positive
      int st = starts[i];
      int ed = ends[i];
      PADDLE_ENFORCE_GT(ed, st,
                        platform::errors::InvalidArgument(
                            "C++ Slice Operation Not Support End < Start"));
      out_shape[axis] = ed - st;
    }
569 570 571 572 573 574 575 576 577
    std::vector<int> offset(rank), extends(rank);
    for (size_t i = 0; i < rank; ++i) {
      offset[i] = 0;
      extends[i] = x.dims()[i];
    }
    for (size_t i = 0; i < new_axes.size(); ++i) {
      offset[new_axes[i]] = starts[i];
      extends[new_axes[i]] = ends[i] - starts[i];
    }
578
    ret.Resize(phi::make_ddim(out_shape));
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    ret.mutable_data<T>(context.GetPlace());
    switch (rank) {
      DITO_SLICE_RANK_CASE(1);
      DITO_SLICE_RANK_CASE(2);
      DITO_SLICE_RANK_CASE(3);
      DITO_SLICE_RANK_CASE(4);
      DITO_SLICE_RANK_CASE(5);
      DITO_SLICE_RANK_CASE(6);
      default: {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Invalid Rank number, "
            "currently only support rank between 2~6"));
      }
    }
    return ret;
594 595
  }

596 597 598 599 600 601 602
  framework::Tensor TrilTriu(const framework::Tensor& x, int diagonal,
                             bool lower) {
    framework::AttributeMap attrs;
    attrs["diagonal"] = diagonal;
    attrs["lower"] = lower;
    NameInTensorMap inputs({{"X", {&x}}});
    int x_rank = x.dims().size();
603 604 605
    PADDLE_ENFORCE_GE(
        x_rank, 2,
        platform::errors::InvalidArgument("Rank must be at least 2."));
606
    std::vector<int> out_shape = phi::vectorize<int>(x.dims());
607 608 609
    return CreateOpRunAndReturnTensor("tril_triu", inputs, attrs, out_shape);
  }

610 611 612 613 614 615 616 617 618 619 620
  framework::Tensor TriangularSolve(const framework::Tensor& x,
                                    const framework::Tensor& y, bool upper,
                                    bool transpose, bool unitriangular) {
    framework::AttributeMap attrs;
    attrs["upper"] = upper;
    attrs["transpose"] = transpose;
    attrs["unitriangular"] = unitriangular;
    NameInTensorMap inputs({{"X", {&x}}, {"Y", {&y}}});
    auto x_dims = x.dims();
    auto y_dims = y.dims();
    auto y_dims_n = y_dims.size();
621 622
    std::vector<int64_t> x_dims_vec = phi::vectorize<int64_t>(x_dims);
    std::vector<int64_t> y_dims_vec = phi::vectorize<int64_t>(y_dims);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
    std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(),
                                        x_dims_vec.end() - 2);
    std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(),
                                        y_dims_vec.end() - 2);
    std::vector<int64_t> expand_batch_portion =
        get_broadcast_batch_portion(x_dims_vec_cut, y_dims_vec_cut);
    std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
    y_broadcast_dims.insert(y_broadcast_dims.end(), {y_dims_vec[y_dims_n - 2],
                                                     y_dims_vec[y_dims_n - 1]});
    std::vector<int> out_shape(y_broadcast_dims.begin(),
                               y_broadcast_dims.end());
    return CreateOpRunAndReturnTensor("triangular_solve", inputs, attrs,
                                      out_shape);
  }

  framework::Tensor ConcatTwoTensors(const framework::Tensor& x,
                                     const framework::Tensor& y, int axis) {
    framework::AttributeMap attrs;
    attrs["axis"] = axis;
    std::vector<framework::DDim> inputs_dims({x.dims(), y.dims()});
    NameInTensorMap inputs({{"X", {&x, &y}}});
    size_t axis_ =
        ComputeAxisForConcatOp(static_cast<int64_t>(axis),
                               static_cast<int64_t>(inputs_dims[0].size()));
    framework::DDim out_dims =
        ComputeAndCheckShapeForConcatOp(true, inputs_dims, axis_);
    if (out_dims[axis_] < 0) {
      out_dims[axis_] = -1;
    }
652
    std::vector<int> out_shape = phi::vectorize<int>(out_dims);
653 654 655
    return CreateOpRunAndReturnTensor("concat", inputs, attrs, out_shape);
  }

656 657 658 659 660
  Tensor Conj(const Tensor& x) {
    Tensor out;
    auto* out_data = out.mutable_data<T>(x.dims(), context.GetPlace());
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(x.numel());
661
    phi::funcs::ConjFunctor<T> functor(x_data, x.numel(), out_data);
662 663 664 665
    for_range(functor);
    return out;
  }

L
Lijunhui 已提交
666 667 668
  Tensor Real(const Tensor& x) {
    Tensor out;
    auto numel = x.numel();
669
    auto* out_data = out.mutable_data<phi::dtype::Real<T>>(
L
Lijunhui 已提交
670
        x.dims(), context.GetPlace(),
671
        static_cast<size_t>(numel * sizeof(phi::dtype::Real<T>)));
L
Lijunhui 已提交
672 673
    auto* x_data = x.data<T>();
    auto for_range = GetForRange(numel);
674
    phi::funcs::RealFunctor<T> functor(x_data, out_data, numel);
L
Lijunhui 已提交
675 676 677 678
    for_range(functor);
    return out;
  }

679 680 681 682 683 684 685 686 687 688 689 690 691
  Tensor DiagFill(const int m, const int n, const int num_lower_diags,
                  const int num_upper_diags, const Tensor& scale,
                  const Tensor& input) {
    Tensor out;
    auto& dev_ctx = context.template device_context<DeviceContext>();
    platform::ForRange<DeviceContext> for_range(dev_ctx, input.numel());
    DiagAndFillFunctor<T, ValueType> diag_and_copy_functor(
        m, n, num_lower_diags, num_upper_diags, scale.data<ValueType>(),
        input.data<T>(), out.mutable_data<T>(input.dims(), input.place()));
    for_range(diag_and_copy_functor);
    return out;
  }

692 693
 private:
  const framework::ExecutionContext& context;
694 695
  phi::funcs::BlasT<DeviceContext, T> GetBlas() {
    return phi::funcs::GetBlas<DeviceContext, T>(context);
696 697 698 699 700
  }
  platform::ForRange<DeviceContext> GetForRange(int numel) {
    auto& dev_ctx = context.template device_context<DeviceContext>();
    return platform::ForRange<DeviceContext>(dev_ctx, numel);
  }
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
  template <size_t D>
  void EigenSliceWrapper(const framework::Tensor* in,
                         const std::vector<int>& start,
                         const std::vector<int>& end, framework::Tensor* out) {
    // Slice by call Eigen Tensor Function `.slice()`
    size_t rank = in->dims().size();
    PADDLE_ENFORCE_EQ(start.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function start "
                          "argument must have the same length as input rank."));
    PADDLE_ENFORCE_EQ(end.size(), rank,
                      platform::errors::InvalidArgument(
                          "EigenSliceWrapper function end "
                          "argument must have the same length as input rank."));
    auto eigen_place_ptr =
        context.template device_context<DeviceContext>().eigen_device();
    auto eigen_place = *eigen_place_ptr;
    auto out_t = framework::EigenTensor<T, D>::From(*out, out->dims());
    auto in_t = framework::EigenTensor<T, D>::From(*in, in->dims());
    Eigen::DSizes<int, D> offsets_32bit, extents_32bit;
    for (size_t i = 0; i < D; i++) {
      offsets_32bit[i] = start[i];
      extents_32bit[i] = end[i];
    }
    EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
        eigen_place, framework::To32BitIndex(out_t),
        framework::To32BitIndex(in_t), offsets_32bit, extents_32bit);
  }
729 730 731 732 733 734 735 736 737 738 739 740 741 742
  framework::Tensor CreateOpRunAndReturnTensor(
      const std::string& type, const NameInTensorMap& inputs,
      const framework::AttributeMap& attrs, std::vector<int> out_shape,
      NameOutTensor out_str = {"Out"}) {
    // varialble set dims must be LoDTensor / SelectedRowTensor
    framework::Scope& local_scope = context.scope().NewScope();
    framework::VariableNameMap op_outputs;
    for (auto out_name : out_str) {
      local_scope.Var("tmp_" + out_name)->GetMutable<framework::LoDTensor>();
      op_outputs[out_name].emplace_back("tmp_" + out_name);
    }
    auto out_var = local_scope.Var("tmp_Out");  // return the Out
    // create Out Tensor and allocat memory
    out_var->GetMutable<framework::LoDTensor>()->mutable_data<T>(
743 744
        phi::make_ddim(out_shape), context.GetPlace());
    // phi::make_ddim(out_shape)
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    framework::VariableNameMap op_inputs;
    int counter = 0;
    for (auto item : inputs) {
      auto& tensors = item.second;
      std::vector<std::string> name_vector;
      for (auto each_tensor : tensors) {
        // create score variable and reset the tensor.
        std::string _name = "tmp" + std::to_string(counter++);
        auto in_var = local_scope.Var(_name);  // create
        framework::LoDTensor tmp_tns;
        tmp_tns.ShareDataWith(*each_tensor);  // tensor -> lodtensor
        (*in_var->GetMutable<framework::LoDTensor>()) =
            tmp_tns;  // initialize and set value
        name_vector.emplace_back(_name);
      }
      op_inputs[item.first] = name_vector;
    }
762

763 764 765 766 767
    auto op =
        framework::OpRegistry::CreateOp(type, op_inputs, op_outputs, attrs);
    op->Run(local_scope, context.GetPlace());
    framework::Tensor out;
    out.ShareDataWith(*(out_var->GetMutable<framework::LoDTensor>()));
768
    out.Resize(phi::make_ddim(out_shape));
769 770 771 772 773 774 775
    context.scope().DeleteScope(&local_scope);
    return out;
  }
};
}  // namespace math
}  // namespace operators
}  // namespace paddle