io.py 53.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

24
from paddle.fluid import layers
X
Xin Pan 已提交
25
from paddle.fluid.executor import Executor
26
from paddle.fluid.evaluator import Evaluator
27
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
28
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
29 30
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
31
from . import core
32
from .. import compat as cpt
33 34

__all__ = [
T
tangwei12 已提交
35
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
36
    'load_persistables', 'save_inference_model', 'load_inference_model'
S
sneaxiy 已提交
37
] + reader.__all__
38

39 40
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
41

42 43

def is_parameter(var):
F
fengjiayi 已提交
44 45
    """
    Check whether the given variable is an instance of Parameter.
46 47

    Args:
F
fengjiayi 已提交
48
        var(Variable): The variable to be checked.
49 50

    Returns:
F
fengjiayi 已提交
51 52 53 54 55 56
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

57
            import paddle.fluid as fluid
F
fengjiayi 已提交
58 59
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
60
    """
61 62 63 64
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

78
            import paddle.fluid as fluid
79
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
80 81
            res = fluid.io.is_persistable(param)
    """
82
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
83 84
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
85
        return False
86 87 88 89 90
    return var.persistable


def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
106 107


108 109 110 111 112
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
113
              filename=None):
114
    """
F
fengjiayi 已提交
115 116
    Save variables to the given directory by executor.

117 118 119 120
    There are two ways to specify variables to be saved: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be saved. The first way has a higher priority. In other words, if `vars`
F
fengjiayi 已提交
121
    are assigned, the `main_program` and the `predicate` will be ignored.
122

123 124 125
    The `dirname` are used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the folder `dirname`,
    set `filename` None; if you prefer to save all variables in a single file,
F
fengjiayi 已提交
126
    use `filename` to specify it.
127

F
fengjiayi 已提交
128 129 130
    Args:
        executor(Executor): The executor to run for saving variables.
        dirname(str): The directory path.
131 132
        main_program(Program|None): The program whose variables will be saved.
                                    If it is None, the default main program will
F
fengjiayi 已提交
133 134
                                    be used automatically.
                                    Default: None
135
        vars(list[Variable]|None): The list that contains all variables to save.
F
fengjiayi 已提交
136 137
                                   It has a higher priority than the `main_program`.
                                   Default: None
138 139 140 141
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be saved. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
142 143
                                  `vars` is None).
                                  Default: None
144
        filename(str|None): The file which to save all variables. If you prefer to save
F
fengjiayi 已提交
145 146 147 148 149 150 151 152 153 154 155 156
                            variables separately, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

157 158 159 160 161 162 163 164 165 166 167 168
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
169

170
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
171 172 173 174
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
175
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
176
                               vars=None, predicate = name_has_fc)
F
fengjiayi 已提交
177 178 179 180 181
            # All variables in `main_program` whose name includes "fc" will be saved.
            # And variables are going to be saved separately.


            # The second usage: using `vars` to specify variables
182 183
            var_list = [w, b]
            path = "./my_paddle_vars"
184
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
185 186
                               filename="vars_file")
            # var_a, var_b and var_c will be saved. And they are going to be
187
            # saved in the same file named 'var_file' in the path "./my_paddle_vars".
188
    """
L
lujun 已提交
189
    save_dirname = os.path.normpath(dirname)
190
    if vars is None:
191
        if main_program is None:
Y
Yu Yang 已提交
192
            main_program = default_main_program()
193
        if not isinstance(main_program, Program):
194 195 196 197
            raise TypeError("program should be as Program type or None")

        save_vars(
            executor,
198
            main_program=main_program,
L
lujun 已提交
199
            dirname=save_dirname,
200
            vars=list(filter(predicate, main_program.list_vars())),
201
            filename=filename)
202 203 204
    else:
        save_program = Program()
        save_block = save_program.global_block()
205

206 207 208 209 210
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

211
        save_var_map = {}
212
        for each_var in vars:
213 214 215
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
216
            new_var = _clone_var_in_block_(save_block, each_var)
217
            if filename is None:
218 219 220 221
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
L
lujun 已提交
222 223 224
                    attrs={
                        'file_path': os.path.join(save_dirname, new_var.name)
                    })
225 226 227
            else:
                save_var_map[new_var.name] = new_var

228
        if filename is not None:
229 230 231 232
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

233
            save_block.append_op(
234 235
                type='save_combine',
                inputs={'X': save_var_list},
236
                outputs={},
L
lujun 已提交
237
                attrs={'file_path': os.path.join(save_dirname, filename)})
238

239 240 241
        executor.run(save_program)


242
def save_params(executor, dirname, main_program=None, filename=None):
243
    """
F
fengjiayi 已提交
244 245 246
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

247 248 249
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
250 251
    the file name.

252 253 254
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
255 256 257
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
258 259 260 261 262 263 264 265

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
266 267
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
268 269 270 271 272 273 274 275 276 277 278 279
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
280
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
281
                                 main_program=None)
282 283 284 285
    """
    save_vars(
        executor,
        dirname=dirname,
286
        main_program=main_program,
287
        vars=None,
288
        predicate=is_parameter,
289
        filename=filename)
290 291


292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

314
            import paddle.fluid as fluid
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


473
def save_persistables(executor, dirname, main_program=None, filename=None):
474
    """
475 476
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
477 478
    or file `filename`.

479 480 481
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
482 483 484 485 486
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
487 488
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
489 490
                                    program will be used automatically.
                                    Default: None
491
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
492 493 494 495 496 497 498 499 500 501 502
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
503
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
504
            prog = fluid.default_main_program()
505
            fluid.io.save_persistables(executor=exe, dirname=param_path,
506
                                       main_program=prog)
507
    """
508 509 510 511 512 513 514 515 516 517 518 519 520

    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)

    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
521 522


523 524 525 526 527
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
528
              filename=None):
529
    """
F
fengjiayi 已提交
530 531
    Load variables from the given directory by executor.

532 533 534 535
    There are two ways to specify variables to be loaded: The first way, list
    variables in a list and assign it to the `vars`. The second way, assign the
    `main_program` with an existing program, then all variables in the program
    will be loaded. The first way has a higher priority. In other words if `vars`
F
fengjiayi 已提交
536 537
    are assigned, the `main_program` and the `predicate` will be ignored.

538 539 540
    The `dirname` are used to specify the folder where to load variables.
    If variables were saved in separate files in the folder `dirname`,
    set `filename` None; if all variables were saved in a single file,
F
fengjiayi 已提交
541
    use `filename` to specify it.
542

F
fengjiayi 已提交
543 544 545
    Args:
        executor(Executor): The executor to run for loading variables.
        dirname(str): The directory path.
546 547
        main_program(Program|None): The program whose variables will be loaded.
                                    If it is None, the default main program will
F
fengjiayi 已提交
548 549
                                    be used automatically.
                                    Default: None
550
        vars(list[Variable]|None): The list that contains all variables to load.
F
fengjiayi 已提交
551 552
                                   It has a higher priority than the `main_program`.
                                   Default: None
553 554 555 556
        predicate(function|None): If it is not None, only variables in the
                                  `main_program` that makes predicate(variable)==True
                                  will be loaded. It only works when we are using the
                                  `main_program` to specify variables (In other words
F
fengjiayi 已提交
557 558
                                  `vars` is None).
                                  Default: None
559
        filename(str|None): The file which saved all required variables. If variables
F
fengjiayi 已提交
560 561 562 563 564 565 566 567 568 569 570 571
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

572 573 574 575 576 577 578 579 580 581 582 583
            import paddle.fluid as fluid
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
584

585
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
586 587 588 589
            # The first usage: using `main_program` to specify variables
            def name_has_fc(var):
                res = "fc" in var.name
                return res
590 591 592
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
593
                               vars=None, predicate=name_has_fc)
F
fengjiayi 已提交
594 595 596 597
            # All variables in `main_program` whose name includes "fc" will be loaded.
            # And all the variables are supposed to have been saved in differnet files.

            # The second usage: using `vars` to specify variables
598 599 600 601
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
602
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
F
fengjiayi 已提交
603
                               filename="vars_file")
604 605
            # w and b will be loaded. And they are supposed to haven
            # been saved in the same file named 'var_file' in the path "./my_paddle_vars".
606
    """
L
lujun 已提交
607
    load_dirname = os.path.normpath(dirname)
608
    if vars is None:
609
        if main_program is None:
Y
Yu Yang 已提交
610
            main_program = default_main_program()
611
        if not isinstance(main_program, Program):
612 613 614 615
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
616
            dirname=load_dirname,
T
tangwei12 已提交
617
            main_program=main_program,
618
            vars=list(filter(predicate, main_program.list_vars())),
619
            filename=filename)
620 621 622
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
623

624 625 626 627 628
        if main_program is None:
            main_program = default_main_program()
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

629
        load_var_map = {}
630 631
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
632 633
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
634
            new_var = _clone_var_in_block_(load_block, each_var)
635
            if filename is None:
636 637 638 639
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
640 641 642
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
643 644 645
            else:
                load_var_map[new_var.name] = new_var

646
        if filename is not None:
647 648 649 650
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

651
            load_block.append_op(
652
                type='load_combine',
653
                inputs={},
654
                outputs={"Out": load_var_list},
L
lujun 已提交
655
                attrs={'file_path': os.path.join(load_dirname, filename)})
656 657 658
        executor.run(load_prog)


659
def load_params(executor, dirname, main_program=None, filename=None):
660
    """
F
fengjiayi 已提交
661
    This function filters out all parameters from the give `main_program`
F
fengjiayi 已提交
662
    and then trys to load these parameters from the folder `dirname` or
F
fengjiayi 已提交
663 664
    the file `filename`.

665 666 667
    Use the `dirname` to specify the folder where parameters were saved. If
    parameters were saved in separate files in the folder `dirname`, set
    `filename` None; if all parameters were saved in a single file, use
F
fengjiayi 已提交
668 669
    `filename` to specify the file name.

670 671 672 673
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
    and `load_persistables()` instead.
674 675 676
    If you want to load the pre-trained model structure and parameters
    for the inference, please use the `load_inference_model` API. You can
    refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
677 678 679 680 681 682 683 684

    Args:
        executor(Executor): The executor to run for loading parameters.
        dirname(str): The directory path.
        main_program(Program|None): The program whose parameters will be
                                    loaded. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
685
        filename(str|None): The file which saved all parameters. If parameters
F
fengjiayi 已提交
686 687 688 689 690 691 692 693 694
                            were saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

695
            import paddle.fluid as fluid
F
fengjiayi 已提交
696 697 698
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
699
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
700
                                main_program=None)
701 702
    """
    load_vars(
703 704 705
        executor,
        dirname=dirname,
        main_program=main_program,
706
        predicate=is_parameter,
707
        filename=filename)
708 709


710
def load_persistables(executor, dirname, main_program=None, filename=None):
711
    """
712 713
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then trys to load these variables from the folder
F
fengjiayi 已提交
714 715
    `dirname` or the file `filename`.

716 717 718
    Use the `dirname` to specify the folder where persistable variables were
    saved. If variables were saved in separate files, set `filename` None;
    if all variables were saved in a single file, use `filename` to specify
F
fengjiayi 已提交
719 720 721 722 723
    the file name.

    Args:
        executor(Executor): The executor to run for loading persistable variables.
        dirname(str): The directory path.
724 725
        main_program(Program|None): The program whose persistbale variables will
                                    be loaded. If it is None, the default main
F
fengjiayi 已提交
726 727
                                    program will be used automatically.
                                    Default: None
728
        filename(str|None): The file which saved all variables. If variables were
F
fengjiayi 已提交
729 730 731 732 733 734 735 736 737
                            saved in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

738
            import paddle.fluid as fluid
F
fengjiayi 已提交
739 740 741
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
742
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
743
                                       main_program=None)
744
    """
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

776
            import paddle.fluid as fluid
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
824 825 826 827
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
        raise ValueError("'main_program' should be an instance of Program.")

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
877 878


879 880 881
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
882 883 884
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
885 886
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
887 888 889
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
890

891
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
892
        out = global_block.var(name)
W
Wu Yi 已提交
893
        global_block._prepend_op(
K
Kexin Zhao 已提交
894 895
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
896
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
897 898 899
            attrs={'col': i})


900 901 902
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
903 904
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
905 906 907
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
908

909
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
910 911 912 913 914 915 916
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


917 918 919 920
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
921
                         main_program=None,
922
                         model_filename=None,
923
                         params_filename=None,
T
tangwei12 已提交
924 925
                         export_for_deployment=True,
                         program_only=False):
926
    """
F
fengjiayi 已提交
927 928
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
929 930 931 932
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
933 934 935

    Args:
        dirname(str): The directory path to save the inference model.
936
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
937
                                     during inference.
938
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
939 940
                                     results.
        executor(Executor): The executor that saves the inference model.
941 942
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
943 944
                                    the default main program will be used.
                                    Default: None.
945 946
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
947
                                  `__model__` will be used.
948 949
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
950
                                   in separate files .
X
Xin Pan 已提交
951 952 953 954 955
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
956
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
957

F
fengjiayi 已提交
958
    Returns:
F
flame 已提交
959
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
960 961 962 963 964 965 966

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
967

968 969
            import paddle.fluid as fluid

F
fengjiayi 已提交
970 971
            path = "./infer_model"

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
994
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
995
            # and parameters are going to be saved in separate files under folder
996
            # "./infer_model".
997 998

    """
M
minqiyang 已提交
999
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1000
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1001
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1002
        if len(feeded_var_names) > 0:
1003
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1004
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1005
                    isinstance(name, six.string_types)
1006
                    for name in feeded_var_names)):
M
minqiyang 已提交
1007
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1008 1009

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1010
        target_vars = [target_vars]
X
Xin Pan 已提交
1011
    elif export_for_deployment:
1012 1013
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1014 1015
            raise ValueError("'target_vars' should be a list of Variable.")

1016
    if main_program is None:
Y
Yu Yang 已提交
1017
        main_program = default_main_program()
D
dzhwinter 已提交
1018
        if main_program._is_mem_optimized:
D
dzhwinter 已提交
1019 1020 1021 1022 1023 1024
            warnings.warn(
                "save_inference_model must put before you call memory_optimize. \
                                            the memory_optimize will modify the original program, \
                                            is not suitable for saving inference model \
                                            we save the original program as inference model.",
                RuntimeWarning)
X
Xin Pan 已提交
1025

1026 1027 1028 1029 1030
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1031
        for i, var in enumerate(target_vars):
1032
            if isinstance(var, Variable):
F
flame 已提交
1033 1034 1035
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1036
        target_vars = uniq_target_vars
F
flame 已提交
1037
    target_var_name_list = [var.name for var in target_vars]
1038

1039
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1040
    save_dirname = dirname
1041
    try:
L
lujun 已提交
1042 1043
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1044 1045 1046 1047
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1048 1049 1050 1051
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1052
    model_basename = os.path.join(save_dirname, model_basename)
1053

X
Xin Pan 已提交
1054 1055 1056 1057
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1058 1059 1060

    origin_program = main_program.clone()

X
Xin Pan 已提交
1061
    if export_for_deployment:
X
Xin Pan 已提交
1062 1063
        main_program = main_program.clone()
        global_block = main_program.global_block()
1064
        need_to_remove_op_index = []
X
Xin Pan 已提交
1065 1066 1067
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1068 1069 1070 1071 1072
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1073
        main_program.desc.flush()
X
Xin Pan 已提交
1074

X
Xin Pan 已提交
1075 1076
        main_program = main_program._prune(targets=target_vars)
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1077 1078
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1079 1080 1081 1082 1083
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1084 1085 1086
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1087 1088
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1089

T
tangwei12 已提交
1090 1091 1092 1093 1094 1095
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1096 1097
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1098 1099
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1100

L
lujun 已提交
1101
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1102
    return target_var_name_list
X
fix  
Xin Pan 已提交
1103

1104

1105 1106 1107
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1108 1109
                         params_filename=None,
                         pserver_endpoints=None):
1110
    """
1111 1112 1113 1114
    Load inference model from a directory. By this API, you can get the model
    structure(inference program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the `load_params` API.
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1115

F
fengjiayi 已提交
1116 1117 1118 1119
    Args:
        dirname(str): The directory path
        executor(Executor): The executor to run for loading inference model.
        model_filename(str|None): The name of file to load inference program.
1120
                                  If it is None, the default filename
F
fengjiayi 已提交
1121 1122 1123
                                  '__model__' will be used.
                                  Default: None
        params_filename(str|None): The name of file to load all parameters.
1124 1125 1126
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
F
fengjiayi 已提交
1127
                                   files, set it as 'None'.
1128 1129 1130 1131
        pserver_endpoints(list|None): This only need by distributed inference.
                                    When use distributed look up table in training,
                                    We also need it in inference.The parameter is
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1132 1133 1134

    Returns:
        tuple: The return of this function is a tuple with three elements:
1135 1136 1137 1138 1139
        (program, feed_target_names, fetch_targets). The `program` is a
        Program, it's the program for inference. The `feed_target_names` is
        a list of str, it contains Names of variables that need to feed
        data in the inference program. The `fetch_targets` is a list of
        Variable. It contains variables from which we can get inference
F
fengjiayi 已提交
1140 1141 1142 1143 1144 1145 1146 1147
        results.

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
            import paddle.fluid as fluid
            import numpy as np
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
1161
            path = "./infer_model"
1162 1163 1164
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
1165 1166
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
F
fengjiayi 已提交
1167 1168 1169 1170
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1171 1172
            # endpoints is your pserver endpoints list, the above is just an example
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1173
            # if we need lookup table, we will use:
1174
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1175 1176
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1177
                                              pserver_endpoints=endpoints))
1178

1179
            # In this example, the inference program was saved in the
1180
            # "./infer_model/__model__" and parameters were saved in
1181
            # separate files in "./infer_model".
1182 1183
            # After getting inference program, feed target names and
            # fetch targets, we can use an Executor to run the inference
F
fengjiayi 已提交
1184
            # program to get the inference result.
1185
    """
L
lujun 已提交
1186 1187
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1188 1189
        raise ValueError("There is no directory named '%s'", dirname)

1190 1191
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1192
    else:
1193
        model_filename = "__model__"
L
lujun 已提交
1194
    model_filename = os.path.join(load_dirname, model_filename)
1195 1196 1197

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1198

1199
    with open(model_filename, "rb") as f:
1200 1201
        program_desc_str = f.read()

1202
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1203
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1204 1205 1206
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1207
    load_persistables(executor, load_dirname, program, params_filename)
1208

T
tangwei12 已提交
1209
    if pserver_endpoints:
T
tangwei12 已提交
1210
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1211

1212 1213
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1214 1215 1216 1217 1218
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1219 1220


T
tangwei12 已提交
1221 1222 1223
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1224 1225
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1226
    program._sync_with_cpp()
T
tangwei12 已提交
1227
    return program
T
tangwei12 已提交
1228 1229


X
xuwei06 已提交
1230 1231
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1243

F
fengjiayi 已提交
1244 1245
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1246

1247
            import paddle.fluid as fluid
F
fengjiayi 已提交
1248 1249 1250
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1251

X
xuwei06 已提交
1252
    """
X
xuwei06 已提交
1253 1254
    assert is_parameter(para)

X
xuwei06 已提交
1255 1256 1257 1258 1259 1260 1261 1262
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1263
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1264

F
fengjiayi 已提交
1265 1266 1267 1268 1269 1270 1271
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1272

F
fengjiayi 已提交
1273 1274
    Returns:
        numpy.array: The parameter's values.
1275

F
fengjiayi 已提交
1276 1277 1278 1279 1280
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1281

F
fengjiayi 已提交
1282 1283 1284
    Examples:
        .. code-block:: python

1285
            import paddle.fluid as fluid
F
fengjiayi 已提交
1286 1287
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1288 1289
    """
    if program is None:
Y
Yu Yang 已提交
1290
        program = default_main_program()
X
xuwei06 已提交
1291 1292
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)