api.py 66.8 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
M
Ming-Xu Huang 已提交
2
# Copyright (c) 2021 NVIDIA Corporation. All rights reserved.
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18
# Temporary disable isort to avoid circular import
# This can be removed after the circular import is resolved
# isort: skip_file
19 20
from __future__ import annotations

21 22
import os
import pickle
23
import warnings
24
from collections import OrderedDict
25
import inspect
M
Ming-Xu Huang 已提交
26
import threading
27
from typing import Any
28

29
import paddle
J
Jiabin Yang 已提交
30
from paddle.fluid import core, dygraph
31 32 33 34 35
from paddle.fluid.compiler import (
    BuildStrategy,
    CompiledProgram,
    ExecutionStrategy,
)
36
from paddle.fluid.data_feeder import check_type
37 38 39 40
from paddle.fluid.dygraph.base import (
    program_desc_tracing_guard,
    switch_to_static_graph,
)
41 42
from .dy2static import logging_utils
from .dy2static.convert_call_func import (
43
    ConversionOptions,
H
hjyp 已提交
44
    add_ignore_module,
45
)
46
from .dy2static.program_translator import (
47 48 49 50
    ProgramTranslator,
    StaticFunction,
    unwrap_decorators,
)
51
from paddle.jit.translated_layer import (
52 53 54 55 56 57
    TranslatedLayer,
    INFER_MODEL_SUFFIX,
    INFER_PARAMS_SUFFIX,
    INFER_PARAMS_INFO_SUFFIX,
    INFER_PROPERTY_SUFFIX,
)
58
from paddle.nn import Layer
59
from paddle.fluid.executor import Executor, scope_guard
60 61 62 63 64 65 66 67 68 69 70 71
from paddle.fluid.framework import (
    Block,
    Program,
    Variable,
    Parameter,
    EagerParamBase,
)
from paddle.fluid.framework import (
    _current_expected_place,
    _dygraph_guard,
    _dygraph_tracer,
)
J
Jiabin Yang 已提交
72
from paddle.fluid.framework import dygraph_only, _non_static_mode
73
from paddle.fluid.wrapped_decorator import wrap_decorator
74
from paddle.fluid.io import save_inference_model
75

76 77 78 79 80 81 82 83 84

def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


85
def _extract_vars(inputs, result_list, err_tag='inputs'):
86
    if isinstance(inputs, Variable):
87
        result_list.append(inputs)
88
    elif isinstance(inputs, (list, tuple)):
89
        for var in inputs:
90
            _extract_vars(var, result_list, err_tag)
91 92
    else:
        raise TypeError(
93
            "The type of 'each element of {}' in paddle.jit.TracedLayer.trace must be fluid.Variable, but received {}.".format(
94 95 96
                err_tag, type(inputs)
            )
        )
97 98


99
def extract_vars(inputs, err_tag='inputs'):
100
    result_list = []
101
    _extract_vars(inputs, result_list, err_tag)
102 103 104
    return result_list


105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

128
          import paddle
129 130
          import paddle.fluid as fluid
          import numpy as np
131
          from paddle.jit.api import dygraph_to_static_func
132 133 134

          @dygraph_to_static_func
          def func(x):
135
              if paddle.mean(x) < 0:
136 137 138 139 140 141
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

142
          x = paddle.full(shape=[3, 3], fill_value=0, dtype='float64')
143 144 145 146 147 148 149 150 151 152 153 154

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
155 156
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
J
Jiabin Yang 已提交
157
        if _non_static_mode() or not program_translator.enable_to_static:
158
            logging_utils.warn(
159
                "The decorator 'dygraph_to_static_func' doesn't work in "
R
Ryan 已提交
160
                "dygraph mode or set 'paddle.jit.enable_to_static' to False. "
161 162
                "We will just return dygraph output."
            )
163 164 165
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
166 167 168 169

    return __impl__


170
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
171

172

173 174 175 176 177 178
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
179
        decorated_obj(StaticFunction): the target decorated StaticFunction object.
180
    """
H
hjyp 已提交
181
    decorator_name = "to_static"
182 183 184 185 186 187 188 189 190 191 192

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


193
def ignore_module(modules: list[Any]):
H
hjyp 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    """
    Adds modules that ignore transcription.
    Builtin modules that have been ignored are collections, pdb, copy, inspect, re, numpy, logging, six

    Args:
        modules (List[Any]): Ignored modules that you want to add

    Examples:
        .. code-block:: python

            import scipy
            import astor

            import paddle
            from paddle.jit import ignore_module

            modules = [
               scipy,
               astor
            ]

            ignore_module(modules)

    """
    add_ignore_module(modules)


221 222 223 224 225 226 227 228 229 230 231
def _check_and_set_backend(backend, build_strategy):
    if backend not in ['CINN', None]:
        raise ValueError(
            "The backend of to_static should be 'CINN' or None, but received {}.".format(
                backend
            )
        )
    if backend == 'CINN':
        build_strategy.build_cinn_pass = True


H
hjyp 已提交
232
def to_static(
233 234 235 236 237
    function=None,
    input_spec=None,
    build_strategy=None,
    backend=None,
    **kwargs,
238
):
239 240
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
241
    @to_static handles the Program and Executor of static graph mode and returns
242 243 244 245
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
246
    Args:
247
        function (callable): callable imperative function.
248
        input_spec(list[InputSpec]|tuple[InputSpec]): list/tuple of InputSpec to specific the shape/dtype/name
249
            information of each input Tensor.
250 251 252 253 254
        build_strategy(BuildStrategy|None): This argument is used to compile the
            converted program with the specified options, such as operators' fusion
            in the computational graph and memory optimization during the execution
            of the computational graph. For more information about build_strategy,
            please refer to :code:`paddle.static.BuildStrategy`. The default is None.
255 256
        backend(str, Optional): Specifies compilation backend, which can be `CINN` or None. When backend is `CINN`, CINN compiler will be used to speed up training and inference.
        kwargs: Support keys including `property`, set `property` to True if the fucntion is python property.
257

258

259
    Returns:
260
        Tensor(s): containing the numerical result.
261

262 263
    Examples:
        .. code-block:: python
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278
            import paddle
            from paddle.jit import to_static

            @to_static
            def func(x):
                if paddle.mean(x) < 0:
                    x_v = x - 1
                else:
                    x_v = x + 1
                return x_v

            x = paddle.ones([1, 2], dtype='float32')
            x_v = func(x)
            print(x_v) # [[2. 2.]]
279

280
    """
281
    property = kwargs.get("property", False)
282

283 284
    def decorated(python_func):
        """
285
        Decorates a python function into a StaticFunction object.
286 287 288
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
289

290
        # Step 2. copy some attributes from original python function.
291 292 293 294 295 296 297
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticFunction(
                function=python_func,
                input_spec=input_spec,
                build_strategy=build_strategy,
                property=property,
298
                backend=backend,
299 300
            ),
        )
301 302

        return static_layer
303

304 305 306
    build_strategy = build_strategy or BuildStrategy()
    if not isinstance(build_strategy, BuildStrategy):
        raise TypeError(
307 308 309 310
            "Required type(build_strategy) shall be `paddle.static.BuildStrategy`, but received {}".format(
                type(build_strategy).__name__
            )
        )
311
    _check_and_set_backend(backend, build_strategy)
312

H
hjyp 已提交
313
    # for usage: `to_static(foo, ...)`
314
    if function is not None:
315
        if isinstance(function, Layer):
316
            if isinstance(function.forward, StaticFunction):
317
                class_name = function.__class__.__name__
318
                logging_utils.warn(
319 320 321 322
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".format(
                        class_name
                    )
                )
323 324 325 326
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
327

H
hjyp 已提交
328
    # for usage: `@to_static`
329
    return decorated
330 331


332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
def not_to_static(func=None):
    """
    A Decorator to suppresses the convertion of a function.

    Args:
        func(callable): The function to decorate.

    Returns:
        callable: A function which won't be converted in Dynamic-to-Static.

    Examples:
        .. code-block:: python

            import paddle

            @paddle.jit.not_to_static
            def func_not_to_static(x):
                res = x - 1
                return res

            @paddle.jit.to_static
            def func(x):
                if paddle.mean(x) < 0:
                    out = func_not_to_static(x)
                else:
                    out = x + 1
                return out

            x = paddle.ones([1, 2], dtype='float32')
            out = func(x)
            print(out) # [[2. 2.]]
    """
    if func is None:
        return not_to_static

    options = ConversionOptions(not_convert=True)
368
    options.attach(func)
369 370 371
    return func


372
class _SaveLoadConfig:
373 374 375 376 377
    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
378 379
        # used for `paddle.load`
        self._keep_name_table = False
380 381 382 383

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

384 385
        # If True, programs are modified to only support direct inference deployment.
        # Otherwise,more information will be stored for flexible optimization and re-training.
386 387 388 389 390
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False
391
        self.with_hook = False
392

393 394 395
        # if True, multi `StaticFunction` will share params in one file.
        self.combine_params = False

396 397 398 399 400 401
    @property
    def output_spec(self):
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
402 403
        if spec is None:
            return
404 405
        if not isinstance(spec, list):
            raise TypeError(
406
                "The config `output_spec` should be 'list', but received input type is %s."
407 408
                % type(input)
            )
409
            for var in spec:
W
wanghuancoder 已提交
410
                if not isinstance(var, core.eager.Tensor):
411
                    raise TypeError(
412
                        "The element in config `output_spec` list should be 'Variable', but received element's type is %s."
413 414
                        % type(var)
                    )
415 416 417 418 419 420 421 422
        self._output_spec = spec

    @property
    def model_filename(self):
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
423 424
        if filename is None:
            return
425
        if not isinstance(filename, str):
426
            raise TypeError(
427
                "The config `model_filename` should be str, but received input's type is %s."
428 429
                % type(filename)
            )
430
        if len(filename) == 0:
431
            raise ValueError("The config `model_filename` is empty string.")
432 433 434 435 436 437 438 439
        self._model_filename = filename

    @property
    def params_filename(self):
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
440 441
        if filename is None:
            return
442
        if not isinstance(filename, str):
443
            raise TypeError(
444
                "The config `params_filename` should be str, but received input's type is %s."
445 446
                % type(filename)
            )
447
        if len(filename) == 0:
448
            raise ValueError("The config `params_filename` is empty string.")
449 450
        self._params_filename = filename

451 452 453 454 455 456
    @property
    def keep_name_table(self):
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
457 458
        if value is None:
            return
459 460
        if not isinstance(value, bool):
            raise TypeError(
461
                "The config `keep_name_table` should be bool value, but received input's type is %s."
462 463
                % type(value)
            )
464 465
        self._keep_name_table = value

466

467
def _parse_save_configs(configs):
468
    supported_configs = [
469 470 471 472 473
        'output_spec',
        "with_hook",
        "combine_params",
        "clip_extra",
        "skip_forward",
474
    ]
475 476 477 478 479 480

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.save` is not supported."
481 482
                % (key)
            )
483 484 485 486

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.output_spec = configs.get('output_spec', None)
487
    inner_config.with_hook = configs.get('with_hook', False)
488
    inner_config.combine_params = configs.get("combine_params", False)
489
    inner_config.clip_extra = configs.get("clip_extra", True)
H
Hui Zhang 已提交
490
    inner_config.skip_forward = configs.get("skip_forward", False)
491 492 493 494 495 496 497 498 499 500 501 502

    return inner_config


def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.jit.load` is not supported."
503 504
                % (key)
            )
505 506 507 508 509 510 511 512 513

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)

    return inner_config


514
def _get_input_var_names(inputs, input_spec):
515 516 517 518
    name_none_error = (
        "The %s's name is None. "
        "When using jit.save, please set InputSepc's name in "
        "to_static(input_spec=[]) and jit.save(input_spec=[]) "
519
        "and make sure they are consistent."
520 521 522 523 524
    )
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of InputSpec or example Tensor "
        "in input_spec is the same as the name of InputSpec in "
525
        "`to_static` decorated on the Layer.forward method."
526
    )
527
    result_list = []
528
    input_var_names = [
529 530 531
        var.name
        for var in paddle.utils.flatten(inputs)
        if isinstance(var, Variable)
532
    ]
533 534
    if input_spec is None:
        # no prune
535 536 537 538
        return input_var_names
    else:
        # fileter out non-tensor type spec infos.
        input_spec = [
539 540
            spec
            for spec in input_spec
541 542 543 544
            if isinstance(spec, paddle.static.InputSpec)
        ]

    if len(input_spec) == len(input_var_names):
545 546
        # no prune
        result_list = input_var_names
547
        # if input spec name not in input_var_names, only raise warning
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
W
wanghuancoder 已提交
563
                # the input_spec can be `InputSpec` or `Tensor`
564 565 566 567 568 569 570
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


571
def _get_output_vars(outputs, output_spec, with_hook=False):
572 573 574 575
    name_no_exists_error = (
        "The tensor `%s` does not exists. "
        "Please make sure the name of example Tensor "
        "in configs.output_spec is the output tensor of "
576
        "Layer.forward method."
577
    )
578 579 580 581
    if output_spec and with_hook:
        raise RuntimeError(
            "Currently not support specify output_spec while founding pre/post hooks in your outermost layer."
        )
582 583
    result_list = []
    output_vars_dict = OrderedDict()
584
    for var in paddle.utils.flatten(outputs):
585 586 587
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
588
        result_list = list(output_vars_dict.values())
589
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
590
        result_list = list(output_vars_dict.values())
591 592 593 594 595 596 597 598 599 600 601 602
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
# NOTE(chenweihang): [ Handling of use cases of API paddle.jit.load ]
# `paddle.jit.load` may be used to load saved results of:
# 1. Expected cases:
#   - paddle.jit.save
#   - paddle.static.save_inference_model
#   - paddle.fluid.io.save_inference_model
# 2. Error cases:
#   - paddle.save: no .pdmodel for prefix
#   - paddle.static.save: no .pdiparams but .pdparams exists
#   - paddle.fluid.io.save_params/save_persistables: no __model__
# TODO(chenweihang): polish error message in above error cases
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
622
            "The {}.pdmodel and {} directory exist at the same time, "
623
            "don't know which one to load, please make sure that the specified target "
624
            "of ``path`` is unique.".format(path, path)
625
        )
626
    elif not prefix_format_exist and not directory_format_exist:
627 628 629 630 631
        raise ValueError(
            "The ``path`` (%s) to load model not exists. "
            "Please make sure that *.pdmodel exists or "
            "don't using ``skip_forward=True`` to jit.save." % path
        )
632 633 634 635 636 637 638 639
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
640 641
                    "not take effect."
                )
642 643 644 645 646
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
647 648
                    "not take effect."
                )
649 650 651 652
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path
653

654
    return model_path, config
655 656


M
Ming-Xu Huang 已提交
657 658 659 660
_save_pre_hooks_lock = threading.Lock()
_save_pre_hooks = []


661
class HookRemoveHelper:
662
    """A HookRemoveHelper that can be used to remove hook."""
M
Ming-Xu Huang 已提交
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697

    def __init__(self, hook):
        self._hook = hook

    def remove(self):
        _remove_save_pre_hook(self._hook)


def _register_save_pre_hook(hook):
    """
    Register a save pre-hook for `paddle.jit.save`.
    This hook will be executed before `save` function has been invoked.

    hook(layer, input_spec, configs) -> None
    - layer (Layer|function): This argument is corresponding to `layer` in `paddle.jit.save`.
    - input_spec (list or tuple[InputSpec|Tensor|Python built-in variable]): This argument is corresponding to `input_spec` in `paddle.jit.save`.
    - configs (dict): This argument is corresponding to `configs` in `paddle.jit.save`.

    Args:
        hook(function): a function registered as a save pre-hook

    Returns:
        HookRemoveHelper: a HookRemoveHelper object that can be used to remove the added hook by calling `hook_remove_helper.remove()`.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            IMAGE_SIZE = 256
            CLASS_NUM = 10

            class LinearNet(paddle.nn.Layer):
                def __init__(self):
698
                    super().__init__()
M
Ming-Xu Huang 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
                    self._linear = paddle.nn.Linear(IMAGE_SIZE, CLASS_NUM)

                def forward(self, x):
                    return self._linear(x)

            saving_count = 0
            def save_pre_hook(layer, input_spec, configs):
                global saving_count
                saving_count += 1

            remove_handler = paddle.jit.register_save_pre_hook(save_pre_hook)

            layer = LinearNet()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1

            remove_handler.remove()
            paddle.jit.save(layer, "/tmp", [paddle.static.InputSpec(shape=[-1, IMAGE_SIZE])])
            # saving_count == 1
    """
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook not in _save_pre_hooks:
        _save_pre_hooks.append(hook)
    _save_pre_hooks_lock.release()
    return HookRemoveHelper(hook)


def _clear_save_pre_hooks():
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    _save_pre_hooks.clear()
    _save_pre_hooks_lock.release()


def _remove_save_pre_hook(hook):
    global _save_pre_hooks_lock
    global _save_pre_hooks
    _save_pre_hooks_lock.acquire()
    if hook in _save_pre_hooks:
        _save_pre_hooks.remove(hook)
    _save_pre_hooks_lock.release()


745
@wrap_decorator
M
Ming-Xu Huang 已提交
746 747 748 749 750 751 752 753 754 755
def _run_save_pre_hooks(func):
    def wrapper(layer, path, input_spec=None, **configs):
        global _save_pre_hooks
        for hook in _save_pre_hooks:
            hook(layer, input_spec, configs)
        func(layer, path, input_spec, **configs)

    return wrapper


756
def _save_property(filename: str, property_vals: list[tuple[Any, str]]):
757 758 759
    """class property serialization.

    Args:
760 761
        filename (str): *.meta
        property_vals (list[tuple[Any, str]]): class property.
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
    """

    def set_property(meta, key, val):
        if isinstance(val, float):
            meta.set_float(key, val)
        elif isinstance(val, int):
            meta.set_int(key, val)
        elif isinstance(val, str):
            meta.set_string(key, val)
        elif isinstance(val, (tuple, list)):
            if isinstance(val[0], float):
                meta.set_floats(key, val)
            elif isinstance(val[0], int):
                meta.set_ints(key, val)
            elif isinstance(val[0], str):
                meta.set_strings(key, val)
        else:
            raise ValueError(f"Note support val type: {type(val)}")
        return

    with open(filename, 'wb') as f:
        meta = paddle.framework.core.Property()
        for item in property_vals:
            val, key = item[0], item[1]
            set_property(meta, key, val)
        f.write(meta.serialize_to_string())


M
Ming-Xu Huang 已提交
790
@_run_save_pre_hooks
791
@switch_to_static_graph
792
def save(layer, path, input_spec=None, **configs):
793
    """
794
    Saves input Layer or function as ``paddle.jit.TranslatedLayer``
795 796
    format model, which can be used for inference or fine-tuning after loading.

797
    It will save the translated program and all related persistable
798
    variables of input Layer to given ``path`` .
799 800

    ``path`` is the prefix of saved objects, and the saved translated program file
801
    suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` ,
802
    and here also saved some additional variable description information to a file,
803
    its suffix is ``.pdiparams.info``, these additional information is used in fine-tuning.
804 805

    The saved model can be loaded by follow APIs:
806 807
      - ``paddle.jit.load``
      - ``paddle.static.load_inference_model``
808 809
      - Other C++ inference APIs

810
    .. note::
811
        When using ``paddle.jit.save`` to save a function, parameters will not be saved. If you have to
812 813
        save the parameter, please pass the Layer containing function and parameter to ``paddle.jit.save``.

814
    Args:
815
        layer (Layer|function): The Layer or function to be saved.
816
        path (str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
817 818 819
        input_spec (list or tuple[InputSpec|Tensor|Python built-in variable], optional): Describes the input of the saved model's forward
            method, which can be described by InputSpec or example Tensor. Moreover, we support to specify non-tensor type argument,
            such as int, float, string, or list/dict of them.If None, all input variables of
820
            the original Layer's forward method would be the inputs of the saved model. Default None.
821 822
        **configs (dict, optional): Other save configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
823 824 825
            DO NOT use them. Default None.
            The following options are currently supported:
            (1) output_spec (list[Tensor]): Selects the output targets of the saved model.
826 827 828
            By default, all return variables of original Layer's forward method are kept as the
            output of the saved model. If the provided ``output_spec`` list is not all output variables,
            the saved model will be pruned according to the given ``output_spec`` list.
829

830 831 832 833 834 835
    Returns:
        None

    Examples:
        .. code-block:: python

836
            # example 1: save layer
837
            import numpy as np
838 839 840
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
841

842 843 844
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
845

846 847 848 849 850 851 852
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
853

854 855 856 857
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
858

859 860
                def __len__(self):
                    return self.num_samples
861

862 863
            class LinearNet(nn.Layer):
                def __init__(self):
864
                    super().__init__()
865
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
866

867
                @paddle.jit.to_static
868 869 870
                def forward(self, x):
                    return self._linear(x)

871 872 873 874 875 876 877 878 879 880 881 882
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

            # 1. train & save model.
883

884 885 886 887
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
888

889 890 891 892 893 894 895
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
896

897 898
            # train
            train(layer, loader, loss_fn, adam)
899

900
            # save
901 902
            path = "example_model/linear"
            paddle.jit.save(layer, path)
903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922

            # example 2: save function
            import paddle
            from paddle.static import InputSpec


            def save_function():
                @paddle.jit.to_static
                def fun(inputs):
                    return paddle.tanh(inputs)

                path = 'test_jit_save_load_function_1/func'
                inps = paddle.rand([3, 6])
                origin = fun(inps)

                paddle.jit.save(fun, path)
                load_func = paddle.jit.load(path)

                load_result = load_func(inps)
                print((load_result - origin).abs().max() < 1e-10)
923

924
            save_function()
925 926
    """

927
    # 1. input build & check
928
    prog_translator = ProgramTranslator()
929
    is_prim_infer = core._is_fwd_prim_enabled() and core._is_bwd_prim_enabled()
930
    if not prog_translator.enable_to_static:
931
        raise RuntimeError(
R
Ryan 已提交
932
            "The paddle.jit.save doesn't work when setting 'paddle.jit.enable_to_static' to False."
933
        )
934

935
    if not (
936
        isinstance(layer, (Layer, StaticFunction)) or inspect.isfunction(layer)
937
    ):
938
        raise TypeError(
939
            "The input of paddle.jit.save should be 'Layer' or 'Function', but received input type is %s."
940 941
            % type(layer)
        )
942 943 944 945
    elif inspect.isfunction(layer) or isinstance(layer, StaticFunction):
        warnings.warn(
            'What you save is a function, and `jit.save` will generate the name of the model file according to `path` you specify. When loading these files with `jit.load`, you get a `TranslatedLayer` whose inference result is the same as the inference result of the function you saved.'
        )
946

947 948
    # NOTE(chenweihang): If the input layer be wrapped by DataParallel,
    # the args and kwargs of forward method will can't be parsed by
949
    # function_spec, so here we save DataParallel._layers instead
950 951 952 953 954 955 956
    # DataParallel it self
    # NOTE(chenweihang): using inner_layer, do not change input layer
    if isinstance(layer, paddle.DataParallel):
        inner_layer = layer._layers
    else:
        inner_layer = layer

957 958 959 960 961 962
    # path check
    file_prefix = os.path.basename(path)
    if file_prefix == "":
        raise ValueError(
            "The input path MUST be format of dirname/file_prefix "
            "[dirname\\file_prefix in Windows system], but received "
963 964
            "file_prefix is empty string."
        )
965 966 967 968

    dirname = os.path.dirname(path)
    if dirname and not os.path.exists(dirname):
        os.makedirs(dirname)
969

970 971
    # avoid change user given input_spec
    inner_input_spec = None
972
    if input_spec is not None:
973 974 975
        if isinstance(layer, Layer):
            for attr_func in dir(inner_layer):
                static_func = getattr(inner_layer, attr_func, None)
976 977 978 979
                if (
                    isinstance(static_func, StaticFunction)
                    and 'forward' != attr_func
                ):
980 981
                    raise ValueError(
                        "If there are static functions other than 'forward' that need to be saved, the input 'input_spec' should be None, but received the type of 'input_spec' is %s."
982 983
                        % type(input_spec)
                    )
984

985
        if not isinstance(input_spec, (list, tuple)):
986 987
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
988 989
                % type(input_spec)
            )
990
        inner_input_spec = []
991
        for var in paddle.utils.flatten(input_spec):
992 993
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
W
wanghuancoder 已提交
994
            elif isinstance(var, (core.eager.Tensor, Variable)):
995
                inner_input_spec.append(
996 997
                    paddle.static.InputSpec.from_tensor(var)
                )
998
            else:
999 1000
                # NOTE(Aurelius84): Support non-Tensor type in `input_spec`.
                inner_input_spec.append(var)
1001

1002 1003
    # parse configs
    configs = _parse_save_configs(configs)
1004
    # whether outermost layer has pre/post hook, if does, we need also save
1005
    # these operators in program.
1006
    with_hook = configs.with_hook
1007 1008 1009
    combine_params = configs.combine_params
    if combine_params:
        configs._program_only = True
1010

1011
    scope = core.Scope()
1012
    extra_var_info = {}
1013 1014
    if isinstance(layer, Layer):
        functions = dir(inner_layer)
1015 1016
        if inner_layer._forward_pre_hooks or inner_layer._forward_post_hooks:
            with_hook = True
1017 1018
    else:
        # layer is function
1019 1020 1021
        functions = [
            layer,
        ]
1022

1023
    combine_vars = {}
1024
    property_vals = []  # (value, key)
H
Hui Zhang 已提交
1025
    concrete_program = None
1026 1027 1028 1029
    for attr_func in functions:
        if isinstance(layer, Layer):
            static_func = getattr(inner_layer, attr_func, None)
            if isinstance(static_func, StaticFunction):
1030 1031 1032 1033
                if static_func.is_property:
                    # property method to be exported
                    immediate_val = static_func()
                    property_vals.append(
1034 1035 1036 1037 1038
                        (
                            immediate_val,
                            layer.__class__.__name__ + '.' + attr_func,
                        )
                    )
1039 1040
                    continue

1041 1042
                concrete_program = (
                    static_func.concrete_program_specify_input_spec(
1043 1044 1045
                        inner_input_spec,
                        with_hook=with_hook,
                        is_prim_infer=is_prim_infer,
1046 1047
                    )
                )
1048
            elif 'forward' == attr_func:
H
Hui Zhang 已提交
1049 1050 1051 1052
                if configs.skip_forward:
                    # do not jit.save forward function
                    continue

1053
                # transform in jit.save, if input_spec is incomplete, declarative will throw error
1054
                # inner_input_spec is list[InputSpec], it should be packed with same structure
1055 1056
                # as original input_spec here.
                if inner_input_spec:
1057
                    inner_input_spec = paddle.utils.pack_sequence_as(
1058 1059
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1060
                static_forward = to_static(
1061 1062 1063 1064
                    inner_layer.forward, input_spec=inner_input_spec
                )
                concrete_program = (
                    static_forward.concrete_program_specify_input_spec(
1065
                        with_hook=with_hook, is_prim_infer=is_prim_infer
1066 1067
                    )
                )
1068
                # the input_spec has been used in declarative, which is equal to
H
hjyp 已提交
1069
                # @to_static with input_spec and jit.save without input_spec,
1070 1071 1072 1073
                # avoid needless warning
                inner_input_spec = None
            else:
                continue
1074 1075 1076
        else:
            # When layer is a function
            if isinstance(attr_func, StaticFunction):
1077 1078 1079 1080 1081 1082
                if attr_func.is_property:
                    # property method to be exported
                    immediate_val = attr_func()
                    property_vals.append((immediate_val, attr_func))
                    continue

1083 1084
                concrete_program = (
                    attr_func.concrete_program_specify_input_spec(
1085
                        inner_input_spec, is_prim_infer=is_prim_infer
1086 1087
                    )
                )
1088 1089
            else:
                if inner_input_spec:
1090
                    inner_input_spec = paddle.utils.pack_sequence_as(
1091 1092
                        input_spec, inner_input_spec
                    )
H
hjyp 已提交
1093
                static_function = to_static(
1094 1095
                    attr_func, input_spec=inner_input_spec
                )
1096 1097 1098 1099
                concrete_program = static_function.concrete_program

                if static_function._class_instance is None:
                    warnings.warn(
1100 1101 1102 1103
                        '`jit.save` will only save the `Program`, not the parameters. If you have to save the parameters, please make sure that {} is a member function of `paddle.nn.Layer` and the saved parameters are in `state_dict`'.format(
                            layer
                        )
                    )
1104

1105
        # when save multi `StaticFunction`, all `StaticFunction` share params.
1106 1107
        dygraph_state_dict = None
        if isinstance(inner_layer, Layer):
1108
            dygraph_state_dict = inner_layer.to_static_state_dict()
1109 1110
        elif isinstance(attr_func, StaticFunction):
            if attr_func._class_instance:
1111 1112
                dygraph_state_dict = (
                    attr_func._class_instance.to_static_state_dict()
1113
                )
1114 1115

        if dygraph_state_dict:
1116 1117 1118 1119
            # NOTE(chenweihang): we maintain the mapping of variable name to
            # structured name, the buffer variable (non-persistable)
            # saved to inference program may not need by dygraph Layer,
            # we only record the state_dict variable's structured name
1120 1121
            state_names_dict = {}
            state_var_dict = {}
1122
            for structured_name, var in dygraph_state_dict.items():
1123
                state_names_dict[var.name] = structured_name
1124
                state_var_dict[var.name] = var
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        # 3. share parameters from Layer to scope & record var info
        with dygraph.guard():
            for param_or_buffer in concrete_program.parameters:
                # share to scope
                if param_or_buffer.type == core.VarDesc.VarType.VOCAB:
                    scr_tensor = param_or_buffer.value().get_map_tensor()
                    tgt_var = scope.var(param_or_buffer.name)
                    tgt_var.set_vocab(scr_tensor)
                else:
                    param_or_buffer_tensor = scope.var(
1136 1137 1138 1139 1140 1141 1142 1143
                        param_or_buffer.name
                    ).get_tensor()
                    # src_tensor = param_or_buffer.value().get_tensor()
                    src_tensor = (
                        state_var_dict[param_or_buffer.name]
                        .value()
                        .get_tensor()
                    )
1144 1145 1146
                    param_or_buffer_tensor._share_data_with(src_tensor)
                # record var info
                if param_or_buffer.name not in extra_var_info:
1147
                    extra_info_dict = {}
1148 1149
                    if param_or_buffer.name in state_names_dict:
                        extra_info_dict['structured_name'] = state_names_dict[
1150 1151
                            param_or_buffer.name
                        ]
1152
                    extra_info_dict[
1153 1154
                        'stop_gradient'
                    ] = param_or_buffer.stop_gradient
W
wanghuancoder 已提交
1155
                    if isinstance(param_or_buffer, EagerParamBase):
1156 1157
                        extra_info_dict['trainable'] = param_or_buffer.trainable
                    extra_var_info[param_or_buffer.name] = extra_info_dict
1158 1159

        # 4. build input & output of save_infernece_model
1160 1161 1162 1163 1164 1165 1166 1167
        # NOTE(chenweihang): [ Get input variables name ]
        # There are two cases, whether to prune the inputs or not
        # - not prune inputs (recommend):
        #   - the len(input_spec) == len((concrete_program.inputs) - 1
        #   - here can use concrete_program.inputs directly
        # - prune inputs:
        #   - the input_spec length < len((concrete_program.inputs) - 1
        #   - the input_spec's name should be in concrete_program.inputs
1168 1169 1170
        input_var_names = _get_input_var_names(
            concrete_program.inputs, inner_input_spec
        )
1171 1172

        # NOTE(chenweihang): [ Get output variables ]
1173
        # the rule is like [ Get input variables name ]. For output var,
W
wanghuancoder 已提交
1174
        # we only support Tensor spec, and actually, we only need the
1175
        # var name of output, and we don't recommended to use output_spec
1176 1177
        # print(concrete_program.main_program)
        # print(concrete_program.outputs, configs.output_spec)
1178 1179 1180
        output_vars = _get_output_vars(
            concrete_program.outputs, configs.output_spec, with_hook
        )
1181 1182 1183 1184 1185

        # 5. save inference model
        # construct new save_inference_model arguments
        model_path = dirname
        # NOTE(chenweihang): because prefix contains model and params filename,
1186
        # so we don't support set model_filename & params_filename
1187
        if 'forward' == attr_func or not isinstance(layer, Layer):
1188 1189 1190 1191
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            model_filename = file_prefix + '.' + attr_func + INFER_MODEL_SUFFIX
1192 1193 1194
            params_filename = (
                file_prefix + '.' + attr_func + INFER_PARAMS_SUFFIX
            )
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

        with scope_guard(scope):
            save_inference_model(
                dirname=model_path,
                feeded_var_names=input_var_names,
                target_vars=output_vars,
                executor=Executor(_current_expected_place()),
                main_program=concrete_program.main_program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                export_for_deployment=configs._export_for_deployment,
1206
                program_only=configs._program_only,
1207 1208
                clip_extra=configs.clip_extra,
            )
1209

1210 1211 1212
        if combine_params:
            clone_main_program = concrete_program.main_program.clone()
            clone_main_program = clone_main_program._prune_with_input(
1213 1214
                input_var_names, output_vars
            )
1215 1216
            for block in clone_main_program.blocks:
                combine_vars.update(block.vars)
1217 1218 1219

    # save shared params
    if combine_params:
1220 1221 1222 1223 1224 1225
        # sort vars by name
        combine_vars = sorted(combine_vars.items(), key=lambda item: item[0])
        ordered_vars = []
        for name, var in combine_vars:
            ordered_vars.append(var)

1226 1227
        params_filename = file_prefix + INFER_PARAMS_SUFFIX
        with scope_guard(scope):
1228 1229 1230
            paddle.static.save_vars(
                Executor(_current_expected_place()),
                dirname=model_path,
1231 1232 1233 1234 1235
                vars=list(
                    filter(
                        paddle.framework.io_utils.is_persistable, ordered_vars
                    )
                ),
1236 1237
                filename=params_filename,
            )
1238
        # save property
1239 1240 1241
        property_save_path = os.path.join(
            os.path.normpath(model_path), file_prefix + INFER_PROPERTY_SUFFIX
        )
1242
        _save_property(property_save_path, property_vals)
1243

1244 1245 1246 1247 1248 1249 1250
    # NOTE(chenweihang): [ Save extra variable info ]
    # save_inference_model will lose some important variable information, including:
    #   - Variable name and correspondence (when saved variables as one file)
    #   - Variable.stop_gradient information
    #   - Which persistent variable are parameter and which are not
    #   - Parameter.trainable information
    #
1251 1252
    # The lost information cannot be recovered when it is loaded again,
    # so if we want to perform fine-tune after loading, we may need to
1253 1254
    # configure redundant information to proceed.
    #
1255 1256
    # Due to compatibility issues, we cannot change the original storage structure,
    # but we can save these information in `jit.save` without changing the original
1257 1258
    # storage to improve user experience. So we save extra information into
    # file `***.pdiparams.info`
1259 1260 1261

    # "layer" can only be Layer or function or StaticFunction.
    contain_parameter = False
H
Hui Zhang 已提交
1262 1263 1264
    if concrete_program is not None:
        for var in concrete_program.main_program.list_vars():
            contain_parameter |= isinstance(var, Parameter)
1265 1266

    if (isinstance(layer, Layer) or contain_parameter) and extra_var_info:
1267 1268 1269 1270
        with scope_guard(scope):
            extra_var_info_path = path + INFER_PARAMS_INFO_SUFFIX
            with open(extra_var_info_path, 'wb') as f:
                pickle.dump(extra_var_info, f, protocol=2)
1271 1272 1273


@dygraph_only
1274
def load(path, **configs):
1275 1276 1277
    """
    :api_attr: imperative

1278 1279
    Load model saved by ``paddle.jit.save`` or ``paddle.static.save_inference_model`` or
    paddle 1.x API ``paddle.fluid.io.save_inference_model`` as ``paddle.jit.TranslatedLayer``,
1280
    then performing inference or fine-tune training.
1281 1282

    .. note::
1283
        If you load model saved by ``paddle.static.save_inference_model`` ,
1284 1285
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1286
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1287 1288 1289 1290
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
1291
        path (str): The path prefix to load model. The format is ``dirname/file_prefix`` or ``file_prefix`` .
1292 1293
        **configs (dict, optional): Other load configuration options for compatibility. We do not
            recommend using these configurations, they may be removed in the future. If not necessary,
1294 1295
            DO NOT use them. Default None.
            The following options are currently supported:
1296 1297 1298 1299
            (1) model_filename (str): The inference model file name of the paddle 1.x
            ``save_inference_model`` save format. Default file name is :code:`__model__` .
            (2) params_filename (str): The persistable variables file name of the paddle 1.x
            ``save_inference_model`` save format. No default file name, save variables separately
1300 1301
            by default.

1302 1303 1304 1305 1306

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
1307
        1. Load model saved by ``paddle.jit.save`` then performing inference and fine-tune training.
1308 1309 1310 1311

        .. code-block:: python

            import numpy as np
1312 1313 1314
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1315

1316 1317 1318
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1319

1320 1321
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1322

1323 1324 1325 1326
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1327

1328 1329 1330 1331
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1332

1333 1334 1335 1336 1337
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1338
                    super().__init__()
1339
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1340

1341
                @paddle.jit.to_static
1342 1343 1344
                def forward(self, x):
                    return self._linear(x)

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1356
            # 1. train & save model.
1357

1358
            # create network
1359 1360 1361 1362
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1363
            # create data loader
1364 1365 1366 1367 1368 1369
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1370

1371 1372
            # train
            train(layer, loader, loss_fn, adam)
1373

1374
            # save
1375 1376
            path = "example_model/linear"
            paddle.jit.save(layer, path)
1377

1378
            # 2. load model
1379

1380
            # load
1381
            loaded_layer = paddle.jit.load(path)
1382 1383

            # inference
1384 1385 1386
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1387 1388

            # fine-tune
1389 1390 1391
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1392 1393


1394
        2. Load model saved by ``paddle.fluid.io.save_inference_model`` then performing and fine-tune training.
1395 1396 1397 1398

        .. code-block:: python

            import numpy as np
1399
            import paddle
1400
            import paddle.static as static
1401 1402
            import paddle.nn as nn
            import paddle.optimizer as opt
1403
            import paddle.nn.functional as F
1404

1405 1406 1407
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1408

1409 1410 1411 1412 1413 1414 1415
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1416

1417 1418 1419 1420
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1421

1422 1423
                def __len__(self):
                    return self.num_samples
1424

1425 1426
            paddle.enable_static()

1427 1428
            image = static.data(name='image', shape=[None, 784], dtype='float32')
            label = static.data(name='label', shape=[None, 1], dtype='int64')
1429
            pred = static.nn.fc(x=image, size=10, activation='softmax')
1430 1431
            loss = F.cross_entropy(input=pred, label=label)
            avg_loss = paddle.mean(loss)
1432

1433
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
1434 1435
            optimizer.minimize(avg_loss)

1436 1437 1438
            place = paddle.CPUPlace()
            exe = static.Executor(place)
            exe.run(static.default_startup_program())
1439

1440 1441 1442 1443 1444
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
1445
                batch_size=BATCH_SIZE,
1446 1447
                shuffle=True,
                drop_last=True,
W
WeiXin 已提交
1448
                return_list=False,
1449
                num_workers=2)
1450 1451 1452 1453

            # 1. train and save inference model
            for data in loader():
                exe.run(
1454
                    static.default_main_program(),
1455
                    feed=data,
1456 1457 1458
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
1459
            paddle.fluid.io.save_inference_model(
1460 1461 1462
                model_path, ["image"], [pred], exe)

            # 2. load model
1463 1464

            # enable dygraph mode
1465 1466 1467 1468
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1469

1470 1471 1472
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1473 1474
            pred = fc(x)

1475
            # fine-tune
1476
            fc.train()
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1494
    """
1495 1496 1497 1498
    # 1. construct correct config
    config = _parse_load_config(configs)
    model_path, config = _build_load_path_and_config(path, config)

1499
    return TranslatedLayer._construct(model_path, config)
1500 1501


1502
@dygraph_only
1503 1504 1505
def _trace(
    layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'
):
1506
    assert isinstance(layer, Layer)
1507 1508 1509 1510 1511 1512 1513 1514 1515

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1516
        original_outputs = layer(*inputs)
1517 1518 1519 1520
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1521
        out_vars = extract_vars(outputs, err_tag='outputs')
1522

1523 1524 1525 1526 1527 1528 1529 1530
        (
            program_desc,
            feed_names,
            fetch_names,
            parameters,
        ) = tracer.create_program_desc(
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix
        )
1531 1532 1533 1534 1535
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1536
    return original_outputs, program, feed_names, fetch_names, parameters
1537 1538


1539
class TracedLayer:
1540
    """
1541
    :api_attr: imperative
1542

1543 1544 1545 1546 1547
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1548 1549 1550 1551

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1552 1553

    All TracedLayer objects should not be created by constructor and should
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1565
        self._params = parameters
1566 1567 1568 1569 1570

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1571
            src_tensor = p.value().get_tensor()
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1595
        This method is the only allowed method to create TracedLayer object.
1596 1597 1598 1599
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1600
            layer (paddle.nn.Layer): the layer object to be traced.
1601 1602
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1603 1604

        Returns:
1605
            tuple: A tuple of 2 items, whose the first item is the output of
1606 1607
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1608

1609
        Examples:
1610 1611
            .. code-block:: python:

1612
                import paddle
1613

1614
                class ExampleLayer(paddle.nn.Layer):
1615
                    def __init__(self):
1616
                        super().__init__()
1617
                        self._fc = paddle.nn.Linear(3, 10)
1618 1619 1620 1621

                    def forward(self, input):
                        return self._fc(input)

1622

1623 1624 1625 1626 1627 1628
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])

                # run the static graph model using Executor inside
                out_static_graph = static_layer([in_var])
1629

1630 1631
                print(len(out_static_graph)) # 1
                print(out_static_graph[0].shape) # (2, 10)
1632

1633
                # save the static graph model for inference
1634
                static_layer.save_inference_model('./saved_infer_model')
1635

1636
        """
1637 1638
        assert isinstance(
            layer, Layer
1639
        ), "The type of 'layer' in paddle.jit.TracedLayer.trace must be paddle.nn.Layer, but received {}.".format(
1640 1641
            type(layer)
        )
1642 1643
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1644 1645 1646 1647 1648 1649 1650
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1651
            build_strategy (BuildStrategy, optional): build strategy of
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

1662
                import paddle
1663

1664
                class ExampleLayer(paddle.nn.Layer):
1665
                    def __init__(self):
1666
                        super().__init__()
1667
                        self._fc = paddle.nn.Linear(3, 10)
1668 1669 1670 1671

                    def forward(self, input):
                        return self._fc(input)

1672 1673 1674 1675
                layer = ExampleLayer()
                in_var = paddle.uniform(shape=[2, 3], dtype='float32')

                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
1676

1677 1678
                build_strategy = paddle.static.BuildStrategy()
                build_strategy.enable_inplace = True
1679

1680 1681
                exec_strategy = paddle.static.ExecutionStrategy()
                exec_strategy.num_threads = 2
1682

1683 1684
                static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                out_static_graph = static_layer([in_var])
1685 1686 1687

        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1688 1689
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
1690
        ), "The type of 'build_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
1691 1692
            type(build_strategy)
        )
1693 1694
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
1695
        ), "The type of 'exec_strategy' in paddle.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
1696 1697
            type(exec_strategy)
        )
1698 1699 1700 1701 1702 1703
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
K
kangguangli 已提交
1704
            self._program,
1705 1706
            build_strategy=self._build_strategy,
        )
1707 1708

    def _build_feed(self, inputs):
1709 1710 1711
        assert isinstance(
            inputs, (list, tuple)
        ), "Inputs should be a list or tuple of variables"
1712 1713
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
J
Jiabin Yang 已提交
1714
        if _non_static_mode():
1715
            for x, name in zip(inputs, self._feed_names):
1716
                feed_dict[name] = x.value().get_tensor()
1717 1718 1719 1720 1721 1722 1723 1724
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
1725 1726 1727
        return self._exe.run(
            self._compiled_program, feed=feed, fetch_list=self._fetch_names
        )
1728 1729 1730 1731 1732 1733 1734 1735 1736

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
1737
    def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
1738
        """
1739 1740
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1741

1742 1743 1744
        ``path`` is the prefix of saved objects, and the saved translated program file
        suffix is ``.pdmodel`` , the saved persistable variables file suffix is ``.pdiparams`` .

1745
        Args:
1746
            path(str): The path prefix to save model. The format is ``dirname/file_prefix`` or ``file_prefix``.
1747
            feed (list[int], optional): the input variable indices of the saved
1748
                inference model. If None, all input variables of the
1749 1750 1751 1752 1753 1754
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.
1755
            kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
1756 1757

        Returns:
1758
            None
1759 1760 1761 1762 1763

        Examples:
            .. code-block:: python:

                import numpy as np
1764
                import paddle
1765

1766
                class ExampleLayer(paddle.nn.Layer):
1767
                    def __init__(self):
1768
                        super().__init__()
1769
                        self._fc = paddle.nn.Linear(3, 10)
1770 1771 1772 1773

                    def forward(self, input):
                        return self._fc(input)

1774 1775
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')
1776 1777
                in_var = paddle.to_tensor(in_np)
                layer = ExampleLayer()
1778

1779 1780
                out_dygraph, static_layer = paddle.jit.TracedLayer.trace(layer, inputs=[in_var])
                static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1781

1782 1783 1784 1785
                paddle.enable_static()
                place = paddle.CPUPlace()
                exe = paddle.static.Executor(place)
                program, feed_vars, fetch_vars = paddle.static.load_inference_model(save_dirname,
1786
                                                    exe)
1787 1788 1789

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1790
        """
1791 1792 1793 1794
        check_type(
            path,
            "path",
            str,
1795
            "paddle.jit.TracedLayer.save_inference_model",
1796 1797 1798 1799 1800
        )
        check_type(
            feed,
            "feed",
            (type(None), list),
1801
            "paddle.jit.TracedLayer.save_inference_model",
1802
        )
1803 1804
        if isinstance(feed, list):
            for f in feed:
1805
                check_type(
1806 1807 1808
                    f,
                    "each element of feed",
                    int,
1809
                    "paddle.jit.TracedLayer.save_inference_model",
1810 1811 1812 1813 1814
                )
        check_type(
            fetch,
            "fetch",
            (type(None), list),
1815
            "paddle.jit.TracedLayer.save_inference_model",
1816
        )
1817 1818
        if isinstance(fetch, list):
            for f in fetch:
1819
                check_type(
1820 1821 1822
                    f,
                    "each element of fetch",
                    int,
1823
                    "paddle.jit.TracedLayer.save_inference_model",
1824
                )
1825
        clip_extra = kwargs.get('clip_extra', True)
1826 1827 1828 1829 1830 1831
        # path check
        file_prefix = os.path.basename(path)
        if file_prefix == "":
            raise ValueError(
                "The input path MUST be format of dirname/file_prefix "
                "[dirname\\file_prefix in Windows system], but received "
1832 1833
                "file_prefix is empty string."
            )
1834 1835 1836 1837 1838

        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)

1839 1840 1841 1842
        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1843
            return [all_vars[idx] for idx in partial_vars]
1844 1845 1846 1847 1848 1849 1850

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
1851
                assert target_var is not None, f"{name} cannot be found"
1852 1853
                target_vars.append(target_var)

1854 1855 1856
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
            save_inference_model(
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone(),
                model_filename=model_filename,
                params_filename=params_filename,
                clip_extra=clip_extra,
            )