cos_sim_op.cc 8.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cos_sim_op.h"
16
#include <memory>
X
Xinghai Sun 已提交
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

using framework::Tensor;

class CosSimOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

27
  void InferShape(framework::InferShapeContext* ctx) const override {
28
    // notnull check
Q
Qiao Longfei 已提交
29 30 31 32 33 34 35 36 37 38
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("XNorm"),
                   "Output(XNorm) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("YNorm"),
                   "Output(YNorm) of CosSimOp should not be null.");
39 40

    // shape check
Q
Qiao Longfei 已提交
41 42
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }

    if (check) {
      PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
                        "Ranks of Input(X) and Input(Y) must be equal.");
      PADDLE_ENFORCE_GE(x_dims.size(), 2,
                        "Rank of Input(X) must not be less than 2.");
      PADDLE_ENFORCE_EQ(
          framework::slice_ddim(x_dims, 1, x_dims.size()),
          framework::slice_ddim(y_dims, 1, y_dims.size()),
          "All dimensions except the 1st of Input(X) and Input(Y) "
          "must be equal.");
      PADDLE_ENFORCE(
          x_dims[0] == y_dims[0] || y_dims[0] == 1,
          "The 1st dimension of Input(Y) must be equal to Input(X) or"
          " just 1 (which will be broadcasted to match Input(X)).");
    }
65 66

    // resize tensor
Q
Qiao Longfei 已提交
67 68 69 70
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->SetOutputDim("XNorm", {x_dims[0], 1});
    ctx->SetOutputDim("YNorm", {y_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
71 72 73 74 75
  }
};

class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
76
  void Make() override {
L
lvmengsi 已提交
77 78 79 80 81 82
    AddInput("X",
             "The 1st input of cos_sim op, LoDTensor with shape ``[N_1, N_2, "
             "..., N_k]``, the data type is float32.");
    AddInput("Y",
             "The 2nd input of cos_sim op, Tensor with shape ``[N_1 or 1, N_2, "
             "..., N_k]``, the data type is float32.");
X
Xinghai Sun 已提交
83
    AddOutput("Out", "The output of cos_sim op.");
84 85 86 87 88 89 90 91
    AddOutput("XNorm",
              "Norm of the first input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
    AddOutput("YNorm",
              "Norm of the second input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
L
luotao1 已提交
92 93 94
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
        .SetDefault(true);
95

X
Xinghai Sun 已提交
96
    AddComment(R"DOC(
Y
yi.wu 已提交
97
**Cosine Similarity Operator**
X
Xinghai Sun 已提交
98

Y
yi.wu 已提交
99
$Out = \frac{X^T * Y}{(\sqrt{X^T * X} * \sqrt{Y^T * Y})}$
100

K
Kexin Zhao 已提交
101 102 103
The input X and Y must have the same shape, except that the 1st dimension
of input Y could be just 1 (different from input X), which will be
broadcasted to match the shape of input X before computing their cosine
104
similarity.
105

K
Kexin Zhao 已提交
106 107 108
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

X
Xinghai Sun 已提交
109 110 111 112 113 114 115 116
)DOC");
  }
};

class CosSimOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

117
  void InferShape(framework::InferShapeContext* ctx) const override {
118
    // notnull check
Q
Qiao Longfei 已提交
119 120 121 122 123 124 125
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("XNorm"), "Input(XNorm) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("YNorm"), "Input(YNorm) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");
X
Xinghai Sun 已提交
126

127
    // shape check
Q
Qiao Longfei 已提交
128 129 130 131 132 133
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto xnorm_dims = ctx->GetInputDim("XNorm");
    auto ynorm_dims = ctx->GetInputDim("YNorm");
    auto out_dims = ctx->GetInputDim("Out");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
134 135 136 137 138 139 140 141 142 143 144 145

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
146 147 148 149
    auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
    auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
    PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
                      "Shape of Input(XNorm) must be [X.Dim(0), 1].");
150 151 152 153 154
    PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
                      "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
                      "Shape of Input(Out) must be [X.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
155 156 157
                      "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");

    // resize tensor
Q
Qiao Longfei 已提交
158 159 160 161 162 163 164 165
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
X
Xinghai Sun 已提交
166 167 168
  }
};

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
template <typename T>
class CosSimGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  std::unique_ptr<T> Apply() const override {
    auto* grad_op = new T();
    grad_op->SetType("cos_sim_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput("Y", this->Input("Y"));
    grad_op->SetInput("XNorm", this->Output("XNorm"));
    grad_op->SetInput("YNorm", this->Output("YNorm"));
    grad_op->SetInput("Out", this->Output("Out"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    grad_op->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(grad_op);
  }
};

X
Xinghai Sun 已提交
191 192 193 194
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
195 196 197
REGISTER_OPERATOR(cos_sim, ops::CosSimOp, ops::CosSimOpMaker,
                  ops::CosSimGradOpMaker<paddle::framework::OpDesc>,
                  ops::CosSimGradOpMaker<paddle::imperative::OpBase>);
198
REGISTER_OPERATOR(cos_sim_grad, ops::CosSimOpGrad);
X
Xinghai Sun 已提交
199
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
200 201 202 203
    cos_sim, ops::CosSimKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    cos_sim_grad,
    ops::CosSimGradKernel<paddle::platform::CPUDeviceContext, float>);