cos_sim_op.cc 7.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cos_sim_op.h"
X
Xinghai Sun 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class CosSimOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27
    // notnull check
Q
Qiao Longfei 已提交
28 29 30 31 32 33 34 35 36 37
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("XNorm"),
                   "Output(XNorm) of CosSimOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("YNorm"),
                   "Output(YNorm) of CosSimOp should not be null.");
38 39

    // shape check
Q
Qiao Longfei 已提交
40 41
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (framework::product(x_dims) <= 0 || framework::product(y_dims) <= 0)) {
      check = false;
    }

    if (check) {
      PADDLE_ENFORCE_EQ(x_dims.size(), y_dims.size(),
                        "Ranks of Input(X) and Input(Y) must be equal.");
      PADDLE_ENFORCE_GE(x_dims.size(), 2,
                        "Rank of Input(X) must not be less than 2.");
      PADDLE_ENFORCE_EQ(
          framework::slice_ddim(x_dims, 1, x_dims.size()),
          framework::slice_ddim(y_dims, 1, y_dims.size()),
          "All dimensions except the 1st of Input(X) and Input(Y) "
          "must be equal.");
      PADDLE_ENFORCE(
          x_dims[0] == y_dims[0] || y_dims[0] == 1,
          "The 1st dimension of Input(Y) must be equal to Input(X) or"
          " just 1 (which will be broadcasted to match Input(X)).");
    }
64 65

    // resize tensor
Q
Qiao Longfei 已提交
66 67 68 69
    ctx->SetOutputDim("Out", {x_dims[0], 1});
    ctx->SetOutputDim("XNorm", {x_dims[0], 1});
    ctx->SetOutputDim("YNorm", {y_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
70 71 72 73 74
  }
};

class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
75
  void Make() override {
L
lvmengsi 已提交
76 77 78 79 80 81
    AddInput("X",
             "The 1st input of cos_sim op, LoDTensor with shape ``[N_1, N_2, "
             "..., N_k]``, the data type is float32.");
    AddInput("Y",
             "The 2nd input of cos_sim op, Tensor with shape ``[N_1 or 1, N_2, "
             "..., N_k]``, the data type is float32.");
X
Xinghai Sun 已提交
82
    AddOutput("Out", "The output of cos_sim op.");
83 84 85 86 87 88 89 90
    AddOutput("XNorm",
              "Norm of the first input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
    AddOutput("YNorm",
              "Norm of the second input, reduced along the 1st "
              "dimension.")
        .AsIntermediate();
L
luotao1 已提交
91 92 93
    AddAttr<bool>(framework::kAllKernelsMustComputeRuntimeShape,
                  "Skip calling InferShape() function in the runtime.")
        .SetDefault(true);
94

X
Xinghai Sun 已提交
95
    AddComment(R"DOC(
Y
yi.wu 已提交
96
**Cosine Similarity Operator**
X
Xinghai Sun 已提交
97

Y
yi.wu 已提交
98
$Out = \frac{X^T * Y}{(\sqrt{X^T * X} * \sqrt{Y^T * Y})}$
99

K
Kexin Zhao 已提交
100 101 102
The input X and Y must have the same shape, except that the 1st dimension
of input Y could be just 1 (different from input X), which will be
broadcasted to match the shape of input X before computing their cosine
103
similarity.
104

K
Kexin Zhao 已提交
105 106 107
Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

X
Xinghai Sun 已提交
108 109 110 111 112 113 114 115
)DOC");
  }
};

class CosSimOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

116
  void InferShape(framework::InferShapeContext* ctx) const override {
117
    // notnull check
Q
Qiao Longfei 已提交
118 119 120 121 122 123 124
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("XNorm"), "Input(XNorm) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("YNorm"), "Input(YNorm) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");
X
Xinghai Sun 已提交
125

126
    // shape check
Q
Qiao Longfei 已提交
127 128 129 130 131 132
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto xnorm_dims = ctx->GetInputDim("XNorm");
    auto ynorm_dims = ctx->GetInputDim("YNorm");
    auto out_dims = ctx->GetInputDim("Out");
    auto out_grad_dims = ctx->GetInputDim(framework::GradVarName("Out"));
133 134 135 136 137 138 139 140 141 142 143 144

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
                      "Ranks of Input(X) and Input(Y) must be equal.");
    PADDLE_ENFORCE_GE(x_dims.size(), 2,
                      "Rank of Input(X) must not be less than 2.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 1, x_dims.size()),
                      framework::slice_ddim(y_dims, 1, y_dims.size()),
                      "All dimensions except the 1st of Input(X) and Input(Y) "
                      "must be equal.");
    PADDLE_ENFORCE(x_dims[0] == y_dims[0] || y_dims[0] == 1,
                   "The 1st dimension of Input(Y) must be equal to Input(X) or"
                   " just 1 (which will be broadcasted to match Input(X)).");
145 146 147 148
    auto target_xnorm_dims = framework::make_ddim({x_dims[0], 1});
    auto target_ynorm_dims = framework::make_ddim({y_dims[0], 1});
    PADDLE_ENFORCE_EQ(xnorm_dims, target_xnorm_dims,
                      "Shape of Input(XNorm) must be [X.Dim(0), 1].");
149 150 151 152 153
    PADDLE_ENFORCE_EQ(ynorm_dims, target_ynorm_dims,
                      "Shape of Input(YNorm) must be [Y.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_dims, target_xnorm_dims,
                      "Shape of Input(Out) must be [X.Dim(0), 1].");
    PADDLE_ENFORCE_EQ(out_grad_dims, target_xnorm_dims,
154 155 156
                      "Shape of Input(Out@Grad) must be [X.Dim(0), 1].");

    // resize tensor
Q
Qiao Longfei 已提交
157 158 159 160 161 162 163 164
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
X
Xinghai Sun 已提交
165 166 167 168 169 170 171
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
172 173 174 175
REGISTER_OPERATOR(
    cos_sim, ops::CosSimOp, ops::CosSimOpMaker,
    paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>,
    paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase, true>);
176
REGISTER_OPERATOR(cos_sim_grad, ops::CosSimOpGrad);
X
Xinghai Sun 已提交
177
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
178 179 180 181
    cos_sim, ops::CosSimKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    cos_sim_grad,
    ops::CosSimGradKernel<paddle::platform::CPUDeviceContext, float>);