Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
16fddf32
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
16fddf32
编写于
9月 03, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add broadcasting support (e.g. matrix-vector) for cos sim operator.
上级
b59f3018
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
238 addition
and
78 deletion
+238
-78
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+57
-24
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+91
-51
python/paddle/v2/framework/tests/test_cos_sim_op.py
python/paddle/v2/framework/tests/test_cos_sim_op.py
+90
-3
未找到文件。
paddle/operators/cos_sim_op.cc
浏览文件 @
16fddf32
...
...
@@ -25,16 +25,29 @@ class CosSimOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
// notnull check
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) must not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
"Dimensions of Input(X) and Input(Y) must be the same."
);
auto
dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"XNorm"
)
->
Resize
({
dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"YNorm"
)
->
Resize
({
dims
[
0
],
1
});
// shape check
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
framework
::
arity
(
x_dims
),
framework
::
arity
(
y_dims
),
"Ranks of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE_GE
(
framework
::
arity
(
x_dims
),
2
,
"Rank of Input(X) must not be less than 2."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
1
,
framework
::
arity
(
x_dims
)),
framework
::
slice_ddim
(
y_dims
,
1
,
framework
::
arity
(
y_dims
)),
"All dimensions except 1st of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE
(
x_dims
[
0
]
==
y_dims
[
0
]
||
y_dims
[
0
]
==
1
,
"1st dimension of Input(Y) must be equal to Input(X) or "
"just 1 (which will be broadcasted to match Input(X))."
);
// resize tensor
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"XNorm"
)
->
Resize
({
x_dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"YNorm"
)
->
Resize
({
y_dims
[
0
],
1
});
}
};
...
...
@@ -42,8 +55,8 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CosSimOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"The
fir
st input of cos_sim op."
);
AddInput
(
"Y"
,
"The
seco
nd input of cos_sim op."
);
AddInput
(
"X"
,
"The
1
st input of cos_sim op."
);
AddInput
(
"Y"
,
"The
2
nd input of cos_sim op."
);
AddOutput
(
"Out"
,
"The output of cos_sim op."
);
AddOutput
(
"XNorm"
,
"Row norm of the first input."
).
AsIntermediate
();
AddOutput
(
"YNorm"
,
"Row norm of the second input."
).
AsIntermediate
();
...
...
@@ -51,7 +64,12 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment
(
R"DOC(
Cosine Similarity Operator.
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y))
The equation is: Out = X^T * Y / (sqrt(X^T * X) * sqrt(Y^T * Y)).
Input(X) and Input(Y) must have the same shape, except that the 1st dimension
of Input(Y) could be just 1 (different from Input(X)), which will be
broadcasted to match the shape of Input(X) before computing their cosine
similarity.
)DOC"
);
}
};
...
...
@@ -62,32 +80,47 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
// notnull check
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"XNorm"
),
"Input(XNorm) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"YNorm"
),
"Input(YNorm) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Out"
),
"Input(Out) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) must not be null."
);
// shape check
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
PADDLE_ENFORCE_GE
(
framework
::
arity
(
x_dims
),
framework
::
arity
(
y_dims
),
"Ranks of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE_GE
(
framework
::
arity
(
x_dims
),
2
,
"Rank of Input(X) must not be less than 2."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
1
,
framework
::
arity
(
x_dims
)),
framework
::
slice_ddim
(
y_dims
,
1
,
framework
::
arity
(
y_dims
)),
"All dimensions except 1st of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE
(
x_dims
[
0
]
==
y_dims
[
0
]
||
y_dims
[
0
]
==
1
,
"1st dimension of Input(Y) must be equal to Input(X) or "
"just 1 (which will be broadcasted to match Input(X))."
);
auto
xnorm_dims
=
ctx
.
Input
<
Tensor
>
(
"XNorm"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
xnorm_dims
,
framework
::
make_ddim
({
x_dims
[
0
],
1
}),
"Shape of Input(XNorm) must be [X.Dim(0), 1]."
);
auto
ynorm_dims
=
ctx
.
Input
<
Tensor
>
(
"YNorm"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"Dimensions of Input(X) and Input(Y) must be the same."
);
PADDLE_ENFORCE_EQ
(
xnorm_dims
[
0
],
x_dims
[
0
],
"1st dimension of XNorm must equal that of Input(X)."
);
PADDLE_ENFORCE_EQ
(
xnorm_dims
[
1
],
1
,
"2st dimension of XNorm must be one."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
[
0
],
y_dims
[
0
],
"1st dimension of YNorm must equal that of Input(Y)."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
[
1
],
1
,
"2st dimension of YNorm must be one."
);
PADDLE_ENFORCE_EQ
(
out_dims
[
0
],
x_dims
[
0
],
"1st dimension of Out@GRAD must equal that of Input(X)"
);
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
"1st dimension of Out@GRAD must be one."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
,
framework
::
make_ddim
({
y_dims
[
0
],
1
}),
"Shape of Input(YNorm) must be [Y.Dim(0), 1]."
);
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
"Out"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
out_dims
,
framework
::
make_ddim
({
x_dims
[
0
],
1
}),
"Shape of Input(Out) must be [X.Dim(0), 1]."
);
auto
out_grad_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
PADDLE_ENFORCE_EQ
(
out_grad_dims
,
framework
::
make_ddim
({
x_dims
[
0
],
1
}),
"Shape of Input(Out@Grad) must be [X.Dim(0), 1]."
);
// resize tensor
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
...
...
paddle/operators/cos_sim_op.h
浏览文件 @
16fddf32
...
...
@@ -28,30 +28,38 @@ template <typename Place, typename T>
class
CosSimKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input_x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
output_z
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
output_x_norm
=
context
.
Output
<
Tensor
>
(
"XNorm"
);
auto
*
output_y_norm
=
context
.
Output
<
Tensor
>
(
"YNorm"
);
// get Tensor
auto
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
out_z
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
out_x_norm
=
context
.
Output
<
Tensor
>
(
"XNorm"
);
auto
*
out_y_norm
=
context
.
Output
<
Tensor
>
(
"YNorm"
);
out_z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_x_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
out_y_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output_z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output_x_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output_y_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
input_x
->
dims
();
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
x
=
EigenMatrix
<
T
>::
From
(
*
input_x
,
new_dims
);
auto
y
=
EigenMatrix
<
T
>::
From
(
*
input_y
,
new_dims
);
auto
z
=
EigenMatrix
<
T
>::
From
(
*
output_z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
output_x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
output_y_norm
);
// convert Tensor to Eigen Tensor
int
rows_x
=
in_x
->
dims
()[
0
];
int
rows_y
=
in_y
->
dims
()[
0
];
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
auto
x
=
EigenMatrix
<
T
>::
From
(
*
in_x
,
framework
::
make_ddim
({
rows_x
,
cols
}));
auto
y
=
EigenMatrix
<
T
>::
From
(
*
in_y
,
framework
::
make_ddim
({
rows_y
,
cols
}));
auto
z
=
EigenMatrix
<
T
>::
From
(
*
out_z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
out_x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
out_y_norm
);
// compute
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
xy
=
(
x
*
y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
x_norm
.
device
(
place
)
=
x
.
square
().
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
y_norm
.
device
(
place
)
=
y
.
square
().
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
z
.
device
(
place
)
=
xy
/
x_norm
/
y_norm
;
if
(
rows_x
==
rows_y
)
{
auto
xy
=
(
x
*
y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
z
.
device
(
place
)
=
xy
/
x_norm
/
y_norm
;
}
else
{
Eigen
::
DSizes
<
int
,
2
>
bcast
(
rows_x
,
1
);
auto
xy
=
(
x
*
y
.
broadcast
(
bcast
)).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
z
.
device
(
place
)
=
xy
/
x_norm
/
y_norm
.
broadcast
(
bcast
);
}
}
};
...
...
@@ -59,43 +67,75 @@ template <typename Place, typename T>
class
CosSimGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
input_x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
input_z
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
input_x_norm
=
context
.
Input
<
Tensor
>
(
"XNorm"
);
auto
*
input_y_norm
=
context
.
Input
<
Tensor
>
(
"YNorm"
);
auto
*
output_grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad_y
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
input_grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
// get Tensor
auto
*
in_x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
in_y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
in_z
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
in_x_norm
=
context
.
Input
<
Tensor
>
(
"XNorm"
);
auto
*
in_y_norm
=
context
.
Input
<
Tensor
>
(
"YNorm"
);
auto
*
out_grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_grad_y
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
in_grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
dims
=
input_x
->
dims
();
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
x
=
EigenMatrix
<
T
>::
From
(
*
input_x
,
new_dims
);
auto
y
=
EigenMatrix
<
T
>::
From
(
*
input_y
,
new_dims
);
auto
z
=
EigenMatrix
<
T
>::
From
(
*
input_z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
input_x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
input_y_norm
);
auto
dz
=
EigenMatrix
<
T
>::
From
(
*
input_grad_z
);
// convert Tensor to Eigen Tensor
int
rows_x
=
in_x
->
dims
()[
0
];
int
rows_y
=
in_y
->
dims
()[
0
];
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
auto
x
=
EigenMatrix
<
T
>::
From
(
*
in_x
,
framework
::
make_ddim
({
rows_x
,
cols
}));
auto
y
=
EigenMatrix
<
T
>::
From
(
*
in_y
,
framework
::
make_ddim
({
rows_y
,
cols
}));
auto
z
=
EigenMatrix
<
T
>::
From
(
*
in_z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
in_x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
in_y_norm
);
auto
dz
=
EigenMatrix
<
T
>::
From
(
*
in_grad_z
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
new_dims
[
1
]);
// compute gradident
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
cols
);
auto
z_bcast
=
z
.
broadcast
(
bcast
);
auto
dz_bcast
=
dz
.
broadcast
(
bcast
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
x_snorm_bcast
=
x_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
x_norm
*
y_norm
).
eval
().
broadcast
(
bcast
);
if
(
output_grad_x
)
{
output_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx
=
EigenMatrix
<
T
>::
From
(
*
output_grad_x
,
new_dims
);
dx
.
device
(
place
)
=
dz_bcast
*
(
y
/
norm_prod_bcast
-
z_bcast
*
x
/
x_snorm_bcast
);
}
if
(
output_grad_y
)
{
output_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
EigenMatrix
<
T
>::
From
(
*
output_grad_y
,
new_dims
);
dy
.
device
(
place
)
=
dz_bcast
*
(
x
/
norm_prod_bcast
-
z_bcast
*
y
/
y_snorm_bcast
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
if
(
rows_x
==
rows_y
)
{
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
x_norm
*
y_norm
).
eval
().
broadcast
(
bcast
);
// compute dx
if
(
out_grad_x
)
{
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx
=
EigenMatrix
<
T
>::
From
(
*
out_grad_x
,
framework
::
make_ddim
({
rows_x
,
cols
}));
auto
grad
=
y
/
norm_prod_bcast
-
z_bcast
*
x
/
x_snorm_bcast
;
dx
.
device
(
place
)
=
dz_bcast
*
grad
;
}
// compute dy
if
(
out_grad_y
)
{
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
EigenMatrix
<
T
>::
From
(
*
out_grad_y
,
framework
::
make_ddim
({
rows_y
,
cols
}));
auto
grad
=
x
/
norm_prod_bcast
-
z_bcast
*
y
/
y_snorm_bcast
;
dy
.
device
(
place
)
=
dz_bcast
*
grad
;
}
}
else
{
Eigen
::
DSizes
<
int
,
2
>
bcast_row
(
rows_x
,
1
);
auto
y_bcast
=
y
.
broadcast
(
bcast_row
);
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast_row
).
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
x_norm
*
y_norm
.
broadcast
(
bcast_row
)).
eval
().
broadcast
(
bcast
);
// compute dx
if
(
out_grad_x
)
{
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx
=
EigenMatrix
<
T
>::
From
(
*
out_grad_x
,
framework
::
make_ddim
({
rows_x
,
cols
}));
auto
grad
=
y_bcast
/
norm_prod_bcast
-
z_bcast
*
x
/
x_snorm_bcast
;
dx
.
device
(
place
)
=
dz_bcast
*
grad
;
}
// compute dy
if
(
out_grad_y
)
{
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
EigenMatrix
<
T
>::
From
(
*
out_grad_y
,
framework
::
make_ddim
({
rows_y
,
cols
}));
auto
grad
=
x
/
norm_prod_bcast
-
z_bcast
*
y_bcast
/
y_snorm_bcast
;
dy
.
device
(
place
)
=
(
dz_bcast
*
grad
).
sum
(
Eigen
::
array
<
int
,
1
>
({
0
}));
}
}
}
};
...
...
python/paddle/v2/framework/tests/test_cos_sim_op.py
浏览文件 @
16fddf32
...
...
@@ -4,7 +4,7 @@ from gradient_checker import GradientChecker, create_op
from
op_test_util
import
OpTestMeta
class
TestCosSimOp
(
unittest
.
TestCase
):
class
TestCosSimOp
WithRank2
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
...
...
@@ -24,12 +24,72 @@ class TestCosSimOp(unittest.TestCase):
}
class
TestCosSimOpWithRank2Bcast
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"cos_sim"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
1
,
64
)).
astype
(
"float32"
)
}
expect_x_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
1
)
expect_y_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
1
)
expect_out
=
(
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]).
sum
(
axis
=
1
)
/
\
expect_x_norm
/
expect_y_norm
self
.
outputs
=
{
'XNorm'
:
np
.
expand_dims
(
expect_x_norm
,
1
),
'YNorm'
:
np
.
expand_dims
(
expect_y_norm
,
1
),
'Out'
:
np
.
expand_dims
(
expect_out
,
1
)
}
class
TestCosSimOpWithRank3
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"cos_sim"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
10
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
32
,
64
,
10
)).
astype
(
"float32"
)
}
expect_x_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
(
1
,
2
))
expect_y_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
(
1
,
2
))
expect_out
=
(
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]).
sum
(
axis
=
(
1
,
2
))
/
\
expect_x_norm
/
expect_y_norm
self
.
outputs
=
{
'XNorm'
:
np
.
expand_dims
(
expect_x_norm
,
1
),
'YNorm'
:
np
.
expand_dims
(
expect_y_norm
,
1
),
'Out'
:
np
.
expand_dims
(
expect_out
,
1
)
}
class
TestCosSimOpWithRank3Bcast
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"cos_sim"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
10
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
1
,
64
,
10
)).
astype
(
"float32"
)
}
expect_x_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
(
1
,
2
))
expect_y_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
(
1
,
2
))
expect_out
=
(
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]).
sum
(
axis
=
(
1
,
2
))
/
\
expect_x_norm
/
expect_y_norm
self
.
outputs
=
{
'XNorm'
:
np
.
expand_dims
(
expect_x_norm
,
1
),
'YNorm'
:
np
.
expand_dims
(
expect_y_norm
,
1
),
'Out'
:
np
.
expand_dims
(
expect_out
,
1
)
}
class
TestCosSimGradOp
(
GradientChecker
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"cos_sim"
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
6
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
6
,
5
)).
astype
(
"float32"
)
}
def
test_cpu_gpu_compare
(
self
):
...
...
@@ -56,5 +116,32 @@ class TestCosSimGradOp(GradientChecker):
no_grad_set
=
{
"Y"
})
class
TestCosSimGradOpWithRank2Bcast
(
TestCosSimGradOp
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"cos_sim"
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
6
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
1
,
5
)).
astype
(
"float32"
)
}
class
TestCosSimGradOpWithRank3
(
TestCosSimGradOp
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"cos_sim"
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
6
,
5
,
2
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
6
,
5
,
2
)).
astype
(
"float32"
)
}
class
TestCosSimGradOpWithRank3Bcast
(
TestCosSimGradOp
):
def
setUp
(
self
):
self
.
op
=
create_op
(
"cos_sim"
)
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
6
,
5
,
2
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
1
,
5
,
2
)).
astype
(
"float32"
)
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录