Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
03ea7320
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03ea7320
编写于
9月 13, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update cos_sim operator by following reviewer's comments.
上级
16fddf32
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
65 addition
and
59 deletion
+65
-59
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+38
-28
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+27
-31
未找到文件。
paddle/operators/cos_sim_op.cc
浏览文件 @
03ea7320
...
...
@@ -32,17 +32,18 @@ class CosSimOp : public framework::OperatorWithKernel {
// shape check
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
framework
::
arity
(
x_dims
),
framework
::
arity
(
y_dims
),
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
y_dims
.
size
(),
"Ranks of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE_GE
(
framework
::
arity
(
x_dims
),
2
,
PADDLE_ENFORCE_GE
(
x_dims
.
size
(
),
2
,
"Rank of Input(X) must not be less than 2."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
1
,
framework
::
arity
(
x_dims
)),
framework
::
slice_ddim
(
y_dims
,
1
,
framework
::
arity
(
y_dims
)),
"All dimensions except 1st of Input(X) and Input(Y)
must be equal."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
1
,
x_dims
.
size
()),
framework
::
slice_ddim
(
y_dims
,
1
,
y_dims
.
size
(
)),
"All dimensions except the 1st of Input(X) and Input(Y) "
"
must be equal."
);
PADDLE_ENFORCE
(
x_dims
[
0
]
==
y_dims
[
0
]
||
y_dims
[
0
]
==
1
,
"
1st dimension of Input(Y) must be equal to Input(X) or
"
"just 1 (which will be broadcasted to match Input(X))."
);
"
The 1st dimension of Input(Y) must be equal to Input(X) or
"
"
just 1 (which will be broadcasted to match Input(X))."
);
// resize tensor
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
x_dims
[
0
],
1
});
...
...
@@ -58,8 +59,14 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The 1st input of cos_sim op."
);
AddInput
(
"Y"
,
"The 2nd input of cos_sim op."
);
AddOutput
(
"Out"
,
"The output of cos_sim op."
);
AddOutput
(
"XNorm"
,
"Row norm of the first input."
).
AsIntermediate
();
AddOutput
(
"YNorm"
,
"Row norm of the second input."
).
AsIntermediate
();
AddOutput
(
"XNorm"
,
"Norm of the first input, reduced along the 1st "
"dimension."
)
.
AsIntermediate
();
AddOutput
(
"YNorm"
,
"Norm of the second input, reduced along the 1st "
"dimension."
)
.
AsIntermediate
();
AddComment
(
R"DOC(
Cosine Similarity Operator.
...
...
@@ -95,29 +102,32 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
// shape check
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
PADDLE_ENFORCE_GE
(
framework
::
arity
(
x_dims
),
framework
::
arity
(
y_dims
),
"Ranks of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE_GE
(
framework
::
arity
(
x_dims
),
2
,
"Rank of Input(X) must not be less than 2."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
1
,
framework
::
arity
(
x_dims
)),
framework
::
slice_ddim
(
y_dims
,
1
,
framework
::
arity
(
y_dims
)),
"All dimensions except 1st of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE
(
x_dims
[
0
]
==
y_dims
[
0
]
||
y_dims
[
0
]
==
1
,
"1st dimension of Input(Y) must be equal to Input(X) or "
"just 1 (which will be broadcasted to match Input(X))."
);
auto
xnorm_dims
=
ctx
.
Input
<
Tensor
>
(
"XNorm"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
xnorm_dims
,
framework
::
make_ddim
({
x_dims
[
0
],
1
}),
"Shape of Input(XNorm) must be [X.Dim(0), 1]."
);
auto
ynorm_dims
=
ctx
.
Input
<
Tensor
>
(
"YNorm"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
ynorm_dims
,
framework
::
make_ddim
({
y_dims
[
0
],
1
}),
"Shape of Input(YNorm) must be [Y.Dim(0), 1]."
);
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
"Out"
)
->
dims
();
PADDLE_ENFORCE_EQ
(
out_dims
,
framework
::
make_ddim
({
x_dims
[
0
],
1
}),
"Shape of Input(Out) must be [X.Dim(0), 1]."
);
auto
out_grad_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
PADDLE_ENFORCE_EQ
(
out_grad_dims
,
framework
::
make_ddim
({
x_dims
[
0
],
1
}),
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
y_dims
.
size
(),
"Ranks of Input(X) and Input(Y) must be equal."
);
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
"Rank of Input(X) must not be less than 2."
);
PADDLE_ENFORCE_EQ
(
framework
::
slice_ddim
(
x_dims
,
1
,
x_dims
.
size
()),
framework
::
slice_ddim
(
y_dims
,
1
,
y_dims
.
size
()),
"All dimensions except the 1st of Input(X) and Input(Y) "
"must be equal."
);
PADDLE_ENFORCE
(
x_dims
[
0
]
==
y_dims
[
0
]
||
y_dims
[
0
]
==
1
,
"The 1st dimension of Input(Y) must be equal to Input(X) or"
" just 1 (which will be broadcasted to match Input(X))."
);
auto
target_xnorm_dims
=
framework
::
make_ddim
({
x_dims
[
0
],
1
}),
auto
target_ynorm_dims
=
framework
::
make_ddim
({
y_dims
[
0
],
1
}),
PADDLE_ENFORCE_EQ
(
xnorm_dims
,
target_xnorm_dims
,
"Shape of Input(XNorm) must be [X.Dim(0), 1]."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
,
target_ynorm_dims
,
"Shape of Input(YNorm) must be [Y.Dim(0), 1]."
);
PADDLE_ENFORCE_EQ
(
out_dims
,
target_xnorm_dims
,
"Shape of Input(Out) must be [X.Dim(0), 1]."
);
PADDLE_ENFORCE_EQ
(
out_grad_dims
,
target_xnorm_dims
,
"Shape of Input(Out@Grad) must be [X.Dim(0), 1]."
);
// resize tensor
...
...
paddle/operators/cos_sim_op.h
浏览文件 @
03ea7320
...
...
@@ -42,22 +42,23 @@ class CosSimKernel : public framework::OpKernel {
int
rows_x
=
in_x
->
dims
()[
0
];
int
rows_y
=
in_y
->
dims
()[
0
];
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
auto
x
=
EigenMatrix
<
T
>::
From
(
*
in_x
,
framework
::
make_ddim
({
rows_x
,
cols
})
);
auto
y
=
EigenMatrix
<
T
>::
From
(
*
in_y
,
framework
::
make_ddim
({
rows_y
,
cols
})
);
auto
x
=
EigenMatrix
<
T
>::
Reshape
(
*
in_x
,
1
);
auto
y
=
EigenMatrix
<
T
>::
Reshape
(
*
in_y
,
1
);
auto
z
=
EigenMatrix
<
T
>::
From
(
*
out_z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
out_x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
out_y_norm
);
// compute
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
x_norm
.
device
(
place
)
=
x
.
square
().
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
y_norm
.
device
(
place
)
=
y
.
square
().
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
auto
row_along
=
Eigen
::
array
<
int
,
1
>
({{
1
}});
x_norm
.
device
(
place
)
=
x
.
square
().
sum
(
row_along
).
sqrt
();
y_norm
.
device
(
place
)
=
y
.
square
().
sum
(
row_along
).
sqrt
();
if
(
rows_x
==
rows_y
)
{
auto
xy
=
(
x
*
y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
z
.
device
(
place
)
=
xy
/
x_norm
/
y_norm
;
}
else
{
Eigen
::
DSizes
<
int
,
2
>
bcast
(
rows_x
,
1
);
auto
xy
=
(
x
*
y
.
broadcast
(
bcast
)).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})
);
auto
xy
=
(
x
*
y
.
broadcast
(
bcast
)).
sum
(
row_along
);
z
.
device
(
place
)
=
xy
/
x_norm
/
y_norm
.
broadcast
(
bcast
);
}
}
...
...
@@ -78,61 +79,56 @@ class CosSimGradKernel : public framework::OpKernel {
auto
*
in_grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
// convert Tensor to Eigen Tensor
int
rows_x
=
in_x
->
dims
()[
0
];
int
rows_y
=
in_y
->
dims
()[
0
];
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
auto
x
=
EigenMatrix
<
T
>::
From
(
*
in_x
,
framework
::
make_ddim
({
rows_x
,
cols
}));
auto
y
=
EigenMatrix
<
T
>::
From
(
*
in_y
,
framework
::
make_ddim
({
rows_y
,
cols
}));
auto
x
=
EigenMatrix
<
T
>::
Reshape
(
*
in_x
,
1
);
auto
y
=
EigenMatrix
<
T
>::
Reshape
(
*
in_y
,
1
);
auto
z
=
EigenMatrix
<
T
>::
From
(
*
in_z
);
auto
x_norm
=
EigenMatrix
<
T
>::
From
(
*
in_x_norm
);
auto
y_norm
=
EigenMatrix
<
T
>::
From
(
*
in_y_norm
);
auto
dz
=
EigenMatrix
<
T
>::
From
(
*
in_grad_z
);
// compute gradident
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
cols
);
auto
z_bcast
=
z
.
broadcast
(
bcast
);
auto
dz_bcast
=
dz
.
broadcast
(
bcast
);
auto
x_snorm_bcast
=
x_norm
.
square
().
eval
().
broadcast
(
bcast
);
int
rows_x
=
in_x
->
dims
()[
0
];
int
rows_y
=
in_y
->
dims
()[
0
];
int
cols
=
framework
::
product
(
in_x
->
dims
())
/
rows_x
;
Eigen
::
DSizes
<
int
,
2
>
bcast_cols
(
1
,
cols
);
auto
z_bcast
=
z
.
broadcast
(
bcast_cols
);
auto
dz_bcast
=
dz
.
broadcast
(
bcast_cols
);
auto
x_snorm_bcast
=
x_norm
.
square
().
eval
().
broadcast
(
bcast_cols
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
if
(
rows_x
==
rows_y
)
{
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
x_norm
*
y_norm
).
eval
().
broadcast
(
bcast
);
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast
_cols
);
auto
norm_prod_bcast
=
(
x_norm
*
y_norm
).
eval
().
broadcast
(
bcast
_cols
);
// compute dx
if
(
out_grad_x
)
{
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx
=
EigenMatrix
<
T
>::
From
(
*
out_grad_x
,
framework
::
make_ddim
({
rows_x
,
cols
}));
auto
dx
=
EigenMatrix
<
T
>::
Reshape
(
*
out_grad_x
,
1
);
auto
grad
=
y
/
norm_prod_bcast
-
z_bcast
*
x
/
x_snorm_bcast
;
dx
.
device
(
place
)
=
dz_bcast
*
grad
;
}
// compute dy
if
(
out_grad_y
)
{
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
EigenMatrix
<
T
>::
From
(
*
out_grad_y
,
framework
::
make_ddim
({
rows_y
,
cols
}));
auto
grad
=
x
/
norm_prod_bcast
-
z_bcast
*
y
/
y_snorm_bcast
;
auto
dy
=
EigenMatrix
<
T
>::
Reshape
(
*
out_grad_y
,
1
)
auto
grad
=
x
/
norm_prod_bcast
-
z_bcast
*
y
/
y_snorm_bcast
;
dy
.
device
(
place
)
=
dz_bcast
*
grad
;
}
}
else
{
Eigen
::
DSizes
<
int
,
2
>
bcast_row
(
rows_x
,
1
);
auto
y_bcast
=
y
.
broadcast
(
bcast_row
);
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast_row
).
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
x_norm
*
y_norm
.
broadcast
(
bcast_row
)).
eval
().
broadcast
(
bcast
);
Eigen
::
DSizes
<
int
,
2
>
bcast_rows
(
rows_x
,
1
);
Eigen
::
DSizes
<
int
,
2
>
bcast_rows_cols
(
rows_x
,
1
);
auto
y_bcast
=
y
.
broadcast
(
bcast_rows
);
auto
y_snorm_bcast
=
y_norm
.
square
().
eval
().
broadcast
(
bcast_rows_cols
);
auto
norm_prod_bcast
=
x_norm
*
y_norm
.
broadcast
(
bcast_rows_cols
);
// compute dx
if
(
out_grad_x
)
{
out_grad_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dx
=
EigenMatrix
<
T
>::
From
(
*
out_grad_x
,
framework
::
make_ddim
({
rows_x
,
cols
}));
auto
dx
=
EigenMatrix
<
T
>::
Reshape
(
*
out_grad_x
,
1
);
auto
grad
=
y_bcast
/
norm_prod_bcast
-
z_bcast
*
x
/
x_snorm_bcast
;
dx
.
device
(
place
)
=
dz_bcast
*
grad
;
}
// compute dy
if
(
out_grad_y
)
{
out_grad_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dy
=
EigenMatrix
<
T
>::
From
(
*
out_grad_y
,
framework
::
make_ddim
({
rows_y
,
cols
}));
auto
dy
=
EigenMatrix
<
T
>::
Reshape
(
*
out_grad_y
,
1
);
auto
grad
=
x
/
norm_prod_bcast
-
z_bcast
*
y_bcast
/
y_snorm_bcast
;
dy
.
device
(
place
)
=
(
dz_bcast
*
grad
).
sum
(
Eigen
::
array
<
int
,
1
>
({
0
}));
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录