Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
91215bce
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
91215bce
编写于
9月 02, 2017
作者:
X
Xinghai Sun
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix a bug causing wrong gradient results in cos_sim op.
上级
ed72af48
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
71 addition
and
44 deletion
+71
-44
paddle/operators/cos_sim_op.cc
paddle/operators/cos_sim_op.cc
+24
-8
paddle/operators/cos_sim_op.h
paddle/operators/cos_sim_op.h
+21
-13
python/paddle/v2/framework/tests/gradient_checker.py
python/paddle/v2/framework/tests/gradient_checker.py
+0
-7
python/paddle/v2/framework/tests/test_cos_sim_op.py
python/paddle/v2/framework/tests/test_cos_sim_op.py
+26
-16
未找到文件。
paddle/operators/cos_sim_op.cc
浏览文件 @
91215bce
...
...
@@ -25,14 +25,16 @@ class CosSimOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
should
not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y)
should
not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X)
must
not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y)
must
not be null."
);
PADDLE_ENFORCE_EQ
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
(),
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
(),
"Dimensions of Input(X) and Input(Y) must be the same."
);
auto
dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
({
dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"XNorm"
)
->
Resize
({
dims
[
0
],
1
});
ctx
.
Output
<
Tensor
>
(
"YNorm"
)
->
Resize
({
dims
[
0
],
1
});
}
};
...
...
@@ -43,6 +45,9 @@ class CosSimOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"X"
,
"The first input of cos_sim op."
);
AddInput
(
"Y"
,
"The second input of cos_sim op."
);
AddOutput
(
"Out"
,
"The output of cos_sim op."
);
AddOutput
(
"XNorm"
,
"Row norm of the first input."
).
AsIntermediate
();
AddOutput
(
"YNorm"
,
"Row norm of the second input."
).
AsIntermediate
();
AddComment
(
R"DOC(
Cosine Similarity Operator.
...
...
@@ -57,20 +62,31 @@ class CosSimOpGrad : public framework::OperatorWithKernel {
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) should not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"Y"
),
"Input(Y) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"XNorm"
),
"Input(XNorm) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"YNorm"
),
"Input(YNorm) must not be null."
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD)
should
not be null."
);
"Input(Out@GRAD)
must
not be null."
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
y_dims
=
ctx
.
Input
<
Tensor
>
(
"Y"
)
->
dims
();
auto
xnorm_dims
=
ctx
.
Input
<
Tensor
>
(
"XNorm"
)
->
dims
();
auto
ynorm_dims
=
ctx
.
Input
<
Tensor
>
(
"YNorm"
)
->
dims
();
auto
out_dims
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
();
PADDLE_ENFORCE_EQ
(
x_dims
,
y_dims
,
"Dimensions of Input(X) and Input(Y) must be the same."
);
PADDLE_ENFORCE_EQ
(
xnorm_dims
[
0
],
x_dims
[
0
],
"1st dimension of XNorm must equal that of Input(X)."
);
PADDLE_ENFORCE_EQ
(
xnorm_dims
[
1
],
1
,
"2st dimension of XNorm must be one."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
[
0
],
y_dims
[
0
],
"1st dimension of YNorm must equal that of Input(Y)."
);
PADDLE_ENFORCE_EQ
(
ynorm_dims
[
1
],
1
,
"2st dimension of YNorm must be one."
);
PADDLE_ENFORCE_EQ
(
out_dims
[
0
],
x_dims
[
0
],
"1st dimension of Out@GRAD must equal to Input(X)"
);
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
"1st dimension of Out@GRAD must equal to Input(X)"
);
"1st dimension of Out@GRAD must equal that of Input(X)"
);
PADDLE_ENFORCE_EQ
(
out_dims
[
1
],
1
,
"1st dimension of Out@GRAD must be one."
);
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
y_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
...
...
paddle/operators/cos_sim_op.h
浏览文件 @
91215bce
...
...
@@ -31,21 +31,27 @@ class CosSimKernel : public framework::OpKernel {
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
*
x_norm
=
context
.
Output
<
Tensor
>
(
"XNorm"
);
auto
*
y_norm
=
context
.
Output
<
Tensor
>
(
"YNorm"
);
z
->
mutable_data
<
T
>
(
context
.
GetPlace
());
x_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
y_norm
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dims
=
x
->
dims
();
int
size
=
static_cast
<
int
>
(
framework
::
product
(
dims
));
auto
new_dims
=
framework
::
make_ddim
({
dims
[
0
],
size
/
dims
[
0
]});
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
);
auto
XNorm
=
EigenMatrix
<
T
>::
From
(
*
x_norm
);
auto
YNorm
=
EigenMatrix
<
T
>::
From
(
*
y_norm
);
auto
XY
=
(
X
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
auto
XX
=
(
X
*
X
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
auto
YY
=
(
Y
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
Z
.
device
(
place
)
=
XY
/
XX
.
sqrt
()
/
YY
.
sqrt
();
auto
XY
=
(
X
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
XNorm
.
device
(
place
)
=
(
X
*
X
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
YNorm
.
device
(
place
)
=
(
Y
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
})).
sqrt
();
Z
.
device
(
place
)
=
XY
/
XNorm
/
YNorm
;
}
};
...
...
@@ -56,6 +62,8 @@ class CosSimGradKernel : public framework::OpKernel {
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
context
.
Input
<
Tensor
>
(
"Y"
);
auto
*
z
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
x_norm
=
context
.
Input
<
Tensor
>
(
"XNorm"
);
auto
*
y_norm
=
context
.
Input
<
Tensor
>
(
"YNorm"
);
auto
*
grad_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
grad_y
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
grad_z
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
@@ -69,23 +77,23 @@ class CosSimGradKernel : public framework::OpKernel {
auto
X
=
EigenMatrix
<
T
>::
From
(
*
x
,
new_dims
);
auto
Y
=
EigenMatrix
<
T
>::
From
(
*
y
,
new_dims
);
auto
Z
=
EigenMatrix
<
T
>::
From
(
*
z
);
auto
X_norm
=
EigenMatrix
<
T
>::
From
(
*
x_norm
);
auto
Y_norm
=
EigenMatrix
<
T
>::
From
(
*
y_norm
);
auto
dX
=
EigenMatrix
<
T
>::
From
(
*
grad_x
,
new_dims
);
auto
dY
=
EigenMatrix
<
T
>::
From
(
*
grad_y
,
new_dims
);
auto
dZ
=
EigenMatrix
<
T
>::
From
(
*
grad_z
);
auto
XX
=
(
X
*
X
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
auto
YY
=
(
Y
*
Y
).
sum
(
Eigen
::
array
<
int
,
1
>
({
1
}));
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
dims
[
1
]);
auto
denominator_bcast
=
(
XX
.
sqrt
()
*
YY
.
sqrt
()).
broadcast
(
bcast
);
Eigen
::
DSizes
<
int
,
2
>
bcast
(
1
,
new_dims
[
1
]);
auto
Z_bcast
=
Z
.
broadcast
(
bcast
);
auto
dZ_bcast
=
dZ
.
broadcast
(
bcast
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
auto
X_snorm_bcast
=
X_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
Y_snorm_bcast
=
Y_norm
.
square
().
eval
().
broadcast
(
bcast
);
auto
norm_prod_bcast
=
(
X_norm
*
Y_norm
).
eval
().
broadcast
(
bcast
);
dX
.
device
(
place
)
=
dZ_bcast
*
(
Y
/
denominator_bcast
-
Z_bcast
*
X
/
XX
.
broadcast
(
bcast
)
);
dZ_bcast
*
(
Y
/
norm_prod_bcast
-
Z_bcast
*
X
/
X_snorm_bcast
);
dY
.
device
(
place
)
=
dZ_bcast
*
(
X
/
denominator_bcast
-
Z_bcast
*
Y
/
YY
.
broadcast
(
bcast
));
// dX.device(place) = X;
// Y.device(place) = Y;
dZ_bcast
*
(
X
/
norm_prod_bcast
-
Z_bcast
*
Y
/
Y_snorm_bcast
);
}
};
...
...
python/paddle/v2/framework/tests/gradient_checker.py
浏览文件 @
91215bce
...
...
@@ -304,13 +304,6 @@ class GradientChecker(unittest.TestCase):
# get analytical gradients according to different device
analytic_grads
=
self
.
__get_gradient
(
forward_op
,
backward_op
,
input_vars
,
check_names
,
place
)
#print(numeric_grads[0], numeric_grads[0].shape)
print
(
"dim0: "
,
numeric_grads
[
0
],
numeric_grads
[
0
].
shape
)
print
(
"dim0: "
,
analytic_grads
[
0
],
analytic_grads
[
0
].
shape
)
print
(
"---------------------"
)
print
(
"dim1: "
,
numeric_grads
[
1
],
numeric_grads
[
1
].
shape
)
print
(
"dim1: "
,
analytic_grads
[
1
],
analytic_grads
[
1
].
shape
)
assert
False
self
.
__assert_is_close
(
numeric_grads
,
analytic_grads
,
check_names
,
max_relative_error
,
"Gradient Check On %s"
%
str
(
place
))
python/paddle/v2/framework/tests/test_cos_sim_op.py
浏览文件 @
91215bce
...
...
@@ -10,30 +10,40 @@ class TestCosSimOp(unittest.TestCase):
def
setUp
(
self
):
self
.
type
=
"cos_sim"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
32
,
84
)).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
"float32"
)
}
expect_x_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
1
)
expect_y_norm
=
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
1
)
expect_out
=
(
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]).
sum
(
axis
=
1
)
/
\
expect_x_norm
/
expect_y_norm
self
.
outputs
=
{
'XNorm'
:
np
.
expand_dims
(
expect_x_norm
,
1
),
'YNorm'
:
np
.
expand_dims
(
expect_y_norm
,
1
),
'Out'
:
np
.
expand_dims
(
expect_out
,
1
)
}
expect
=
(
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]).
sum
(
axis
=
1
)
/
\
np
.
linalg
.
norm
(
self
.
inputs
[
'X'
],
axis
=
1
)
/
\
np
.
linalg
.
norm
(
self
.
inputs
[
'Y'
],
axis
=
1
)
expect
=
np
.
expand_dims
(
expect
,
1
)
self
.
outputs
=
{
'Out'
:
expect
}
class
CosSimGradOpTest
(
GradientChecker
):
def
test_cos_sim
(
self
):
def
test_cos_sim_2d
(
self
):
op
=
create_op
(
"cos_sim"
)
inputs
=
{
'X'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
)).
astype
(
"float32"
)
}
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.05
)
def
test_cos_sim_3d
(
self
):
op
=
create_op
(
"cos_sim"
)
#inputs = {
#'X': np.random.random((2, 2)).astype("float32"),
#'Y': np.random.random((2, 2)).astype("float32")
#}
inputs
=
{
'X'
:
np
.
array
([[
0.9
,
0.6
],
[
1.9
,
1.6
]]
).
astype
(
"float32"
),
'Y'
:
np
.
array
([[
0.7
,
0.8
],
[
1.7
,
1.8
]]
).
astype
(
"float32"
)
'X'
:
np
.
random
.
random
((
10
,
5
,
2
)
).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
((
10
,
5
,
2
)
).
astype
(
"float32"
)
}
print
(
inputs
)
self
.
compare_grad
(
op
,
inputs
)
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.5
)
op
,
inputs
,
set
([
"X"
,
"Y"
]),
"Out"
,
max_relative_error
=
0.
0
5
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录