dist_context.py 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

import copy
from collections import defaultdict
from paddle.fluid import framework
18
from paddle.fluid.framework import set_flags
19
from paddle.fluid import core
20
from paddle.distributed.passes import PassContext
21 22 23
from .dist_tensor import DistributedTensor
from .dist_op import DistributedOperator
from .process_mesh import ProcessMesh
24
from .utils import is_loss_grad_op
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

# There always exists a default context for user. And user can set it to another one.
_g_default_distributed_context = None


def get_default_distributed_context():
    global _g_default_distributed_context
    if _g_default_distributed_context is None:
        dist_context = DistributedContext()
        set_default_distributed_context(dist_context)
    return _g_default_distributed_context


def set_default_distributed_context(dist_context):
    global _g_default_distributed_context
    _g_default_distributed_context = dist_context


43 44 45 46
def _node_id(node):
    return (node.node.graph_id(), node.node.id())


47 48 49 50 51 52
class DistributedContext:
    """
    DistributedContext is used to collect related distributed information for program and graph.
    One auto-parallel run should use its own DistributedContext to avoid interfering other run.
    """

53 54 55 56 57 58 59 60 61 62 63
    def __init__(
        self,
        serial_main_prog=None,
        serial_startup_prog=None,
        serial_optimizer=None,
        serial_loss=None,
        feed_vars={},
        fetch_vars={},
        cluster=None,
        strategy=None,
    ):
64 65 66
        # Data members related to original programs (unchanged)
        self._original_serial_main_program = serial_main_prog
        self._original_serial_startup_program = serial_startup_prog
67
        self._original_serial_optimizer = serial_optimizer
68
        self._original_serial_loss = serial_loss
69 70
        self._original_serial_feed_vars = feed_vars
        self._original_serial_fetch_vars = fetch_vars
71 72 73 74

        # Data members related to programs (changed)
        self._serial_main_program = None
        self._serial_startup_program = None
75 76 77 78
        self._serial_loss = None
        self._serial_optimizer = None
        self._serial_feed_vars = {}
        self._serial_fetch_vars = {}
79 80

        # Data members related to the program
81 82
        self._dist_tensors_for_program = {}
        self._dist_ops_for_program = {}
83 84

        # Data members related to the graph
85
        self._serial_graph = None
86 87
        self._dist_tensors_for_graph = {}
        self._dist_ops_for_graph = {}
88 89
        self._node_id_to_tensor_id = {}
        self._node_id_to_op_id = {}
90

91
        # Data members related to the distributed programs
92
        # Distributed programs
93 94
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
95 96
        self._dist_op_context = DistributedOperatorContext()
        self._process_meshes = []
97

98
        self._cluster = cluster
99 100 101 102
        self._strategy = strategy

        # Pass Context
        self._pass_context = PassContext()
103
        self._block_state = BlockState()
104 105 106 107 108 109 110 111

        # Other data members
        self._serial_ordered_tensor_nodes = []
        self._serial_ordered_op_nodes = []
        self._serial_ordered_nodes = []
        # self._tensor_id_to_tensor_node_ids = {}

        self._is_initialized = False
112
        # TODO: need a better way to remove the following flag
113 114 115 116 117 118 119
        self._need_copy_dist_attr_to_graph = False
        self._backup_pass_context_stack = []
        self._backup_block_state_stack = []
        self._backup_dist_tensors_for_program_stack = []
        self._backup_dist_ops_for_program_stack = []
        self._backup_serial_main_program_stack = []
        self._backup_serial_startup_program_stack = []
120

121 122 123
        # flag whether scale gradient with dp size
        self._gradient_scale = True

124 125 126
        # A flag indicates whether the used parallelism is data parallel
        self._data_parallel = False

127
    @property
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    def serial_main_program(self):
        return self._serial_main_program

    @property
    def serial_startup_program(self):
        return self._serial_startup_program

    @property
    def serial_loss(self):
        return self._serial_loss

    @property
    def serial_optimizer(self):
        return self._serial_optimizer

143 144 145 146 147 148 149
    @property
    def serial_feed_vars(self):
        return self._serial_feed_vars

    @property
    def serial_fetch_vars(self):
        return self._serial_fetch_vars
150

151 152 153 154 155 156 157 158 159 160 161 162
    @property
    def dist_main_programs(self):
        return self._dist_main_programs

    @property
    def dist_startup_programs(self):
        return self._dist_startup_programs

    @property
    def cluster(self):
        return self._cluster

163 164 165 166
    @property
    def strategy(self):
        return self._strategy

167 168 169 170
    @property
    def serial_graph(self):
        return self._serial_graph

171 172 173 174
    @property
    def serial_ordered_nodes(self):
        return self._serial_ordered_nodes

175 176 177 178
    @property
    def process_meshes(self):
        return self._process_meshes

179 180 181 182
    @property
    def pass_context(self):
        return self._pass_context

183 184 185 186
    @property
    def dist_op_context(self):
        return self._dist_op_context

187 188 189 190
    @property
    def block_state(self):
        return self._block_state

191
    @property
192
    def has_annotation(self):
193
        return len(self._dist_tensors_for_program) or len(
194 195
            self._dist_ops_for_program
        )
196

197 198 199 200 201 202 203 204
    @property
    def gradient_scale(self):
        return self._gradient_scale

    @gradient_scale.setter
    def gradient_scale(self, gs):
        self._gradient_scale = gs

205 206 207 208 209 210 211 212
    @property
    def data_parallel(self):
        return self._data_parallel

    @data_parallel.setter
    def data_parallel(self, dp):
        self._data_parallel = dp

213 214
    def _backup_serial_info(self, mode):
        self._backup_serial_main_program_stack.append(
215 216
            self._serial_main_program.clone()
        )
217
        self._backup_serial_startup_program_stack.append(
218 219 220 221 222
            self._serial_startup_program.clone()
        )
        self._backup_pass_context_stack.append(
            copy.deepcopy(self._pass_context)
        )
223 224 225 226
        self._backup_block_state_stack.append(copy.deepcopy(self._block_state))

    def _backup_dist_info(self, mode):
        self._backup_dist_tensors_for_program_stack.append(
227 228
            copy.deepcopy(self._dist_tensors_for_program)
        )
229
        self._backup_dist_ops_for_program_stack.append(
230 231
            copy.deepcopy(self._dist_ops_for_program)
        )
232 233 234 235 236 237 238 239

    def _backup(self, serial=True, serial_mode=None, dist=True, dist_mode=None):
        # Use this function carefully
        if serial:
            self._backup_serial_info(serial_mode)
        if dist:
            self._backup_dist_info(dist_mode)

240
    def _restore_serial_loss(self):
241 242
        if self._original_serial_loss:
            if isinstance(self._original_serial_loss, list):
243 244 245 246 247
                if len(self._original_serial_loss) == 1:
                    loss = self._original_serial_loss[0]
                    block_idx = loss.block.idx
                    var_name = loss.name
                    var = self._serial_main_program.blocks[
248 249
                        block_idx
                    ]._var_recursive(var_name)
250 251 252 253 254
                    self._serial_loss = var
                elif len(self._original_serial_loss) == 0:
                    self._serial_loss = []
                else:
                    raise ValueError("multi loss vars are not supported.")
255
            else:
256 257 258
                block_idx = self._original_serial_loss.block.idx
                var_name = self._original_serial_loss.name
                var = self._serial_main_program.blocks[
259 260
                    block_idx
                ]._var_recursive(var_name)
261 262
                self._serial_loss = var

263
    def _restore_serial_feed_vars(self):
264 265 266 267 268 269
        for key, var_list in self._original_serial_feed_vars.items():
            new_var_list = []
            for var in var_list:
                block_idx = var.block.idx
                var_name = var.name
                var = self._serial_main_program.blocks[
270 271
                    block_idx
                ]._var_recursive(var_name)
272 273 274
                new_var_list.append(var)
            self._serial_feed_vars[key] = new_var_list

275
    def _restore_serial_fetch_vars(self):
276 277
        for key, var_list in self._original_serial_fetch_vars.items():
            new_var_list = []
278 279 280 281 282 283 284 285
            # metrics is a list of list
            if key == "metrics":
                for inner_var_list in var_list:
                    new_inner_var_list = []
                    for var in inner_var_list:
                        block_idx = var.block.idx
                        var_name = var.name
                        var = self._serial_main_program.blocks[
286 287
                            block_idx
                        ]._var_recursive(var_name)
288 289 290 291 292 293 294
                        new_inner_var_list.append(var)
                    new_var_list.append(new_inner_var_list)
            else:
                for var in var_list:
                    block_idx = var.block.idx
                    var_name = var.name
                    var = self._serial_main_program.blocks[
295 296
                        block_idx
                    ]._var_recursive(var_name)
297
                    new_var_list.append(var)
298 299
            self._serial_fetch_vars[key] = new_var_list

300 301
    def _restore_serial_info(self, mode="to_backup"):
        if mode == "to_backup":
302 303
            self._serial_main_program = (
                self._backup_serial_main_program_stack.pop()
304
            )
305 306
            self._serial_startup_program = (
                self._backup_serial_startup_program_stack.pop()
307 308 309 310
            )
        elif mode == "to_original":
            assert self._original_serial_main_program is not None
            assert self._original_serial_startup_program is not None
311 312
            self._serial_main_program = (
                self._original_serial_main_program.clone()
313
            )
314 315
            self._serial_startup_program = (
                self._original_serial_startup_program.clone()
316 317 318 319 320 321
            )

        self._restore_serial_loss()
        self._restore_serial_feed_vars()
        self._restore_serial_fetch_vars()
        self._serial_optimizer = self._original_serial_optimizer
322 323 324 325 326
        self._pass_context = self._backup_pass_context_stack.pop()
        self._block_state = self._backup_block_state_stack.pop()

    def _restore_dist_info(self, mode="to_backup"):
        if mode == "to_backup":
327 328
            self._dist_tensors_for_program = (
                self._backup_dist_tensors_for_program_stack.pop()
329
            )
330 331
            self._dist_ops_for_program = (
                self._backup_dist_ops_for_program_stack.pop()
332 333 334 335 336
            )
        elif mode == "to_original":
            assert self._original_dist_tensors_for_program
            assert self._original_dist_ops_for_program
            self._dist_tensors_for_program = copy.deepcopy(
337 338
                self._original_dist_tensors_for_program
            )
339
            self._dist_ops_for_program = copy.deepcopy(
340 341
                self._original_dist_ops_for_program
            )
342 343
        elif mode == "to_default":
            new_tensors_ids = []
344 345 346 347
            for (
                tensor_id,
                dist_tensor,
            ) in self._dist_tensors_for_program.items():
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                if tensor_id in self._tensors_ids:
                    dist_tensor.dist_attr.reset()
                else:
                    new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                if op_id in self._ops_ids:
                    dist_op.dist_attr.reset()
                else:
                    new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        else:
            new_tensors_ids = []
364 365 366 367
            for (
                tensor_id,
                dist_tensor,
            ) in self._dist_tensors_for_program.items():
368 369 370 371 372 373 374 375 376 377 378 379 380 381
                new_tensors_ids.append(tensor_id)
            for tensor_id in new_tensors_ids:
                self._dist_tensors_for_program.pop(tensor_id)
            new_ops_ids = []
            for op_id, dist_op in self._dist_ops_for_program.items():
                new_ops_ids.append(op_id)
            for op_id in new_ops_ids:
                self._dist_ops_for_program.pop(op_id)
        self._dist_main_programs = {}
        self._dist_startup_programs = {}
        self._dist_op_context = DistributedOperatorContext()
        self._need_copy_dist_attr_to_graph = True
        self._process_meshes = []

382 383 384 385 386 387 388
    def _restore(
        self,
        serial=True,
        serial_mode="to_backup",
        dist=True,
        dist_mode="to_backup",
    ):
389 390 391 392 393 394
        # Use this function carefully
        if serial:
            self._restore_serial_info(serial_mode)
        if dist:
            self._restore_dist_info(dist_mode)

395
    def initialize(self, with_graph=True):
396 397
        if not self._is_initialized:
            if not self._serial_main_program:
398
                if self._original_serial_main_program:
399 400
                    self._serial_main_program = (
                        self._original_serial_main_program.clone()
401
                    )
402
            if not self._serial_startup_program:
403
                if self._original_serial_startup_program:
404 405
                    self._serial_startup_program = (
                        self._original_serial_startup_program.clone()
406
                    )
407
            if not self._serial_loss:
408
                self._restore_serial_loss()
409 410 411
            if not self._serial_optimizer:
                self._serial_optimizer = self._original_serial_optimizer
            if not self._serial_feed_vars:
412
                self._restore_serial_feed_vars()
413
            if not self._serial_fetch_vars:
414
                self._restore_serial_fetch_vars()
415

416
            self._init_dist_attr_for_program()
417 418
            # Backup the original distributed information for later restore
            self._original_dist_tensors_for_program = copy.deepcopy(
419 420
                self._dist_tensors_for_program
            )
421
            self._original_dist_ops_for_program = copy.deepcopy(
422 423
                self._dist_ops_for_program
            )
424 425 426
            self._tensors_ids = list(self._dist_tensors_for_program.keys())
            self._ops_ids = list(self._dist_ops_for_program.keys())
            self._is_initialized = True
427 428 429 430

            if with_graph:
                set_flags({"FLAGS_convert_all_blocks": True})
                self._serial_graph = framework.IrGraph(
431 432
                    core.Graph(self._serial_main_program.desc)
                )
433 434 435 436
                self._init_dist_attr_for_graph()
                self._need_copy_dist_attr_to_graph = False

        if self._need_copy_dist_attr_to_graph and with_graph:
437
            self.copy_dist_attr_from_program_to_graph()
438

439
    def add_process_mesh(self, process_mesh):
440 441 442
        assert isinstance(
            process_mesh, ProcessMesh
        ), 'The type of dim_mapping must be ProcessMesh.'
443 444 445 446 447
        if process_mesh not in self.process_meshes:
            self._process_meshes.append(process_mesh)

    def add_dist_tensor_for_program(self, dist_tensor):
        inner_serial_tensor = dist_tensor.serial_tensor
448
        inner_serial_tensor_id = inner_serial_tensor.desc.original_id()
449 450 451 452
        self._dist_tensors_for_program[inner_serial_tensor_id] = dist_tensor

    def add_dist_op_for_program(self, dist_op):
        inner_serial_op = dist_op.serial_op
453
        inner_serial_op_id = inner_serial_op.desc.original_id()
454 455 456 457
        self._dist_ops_for_program[inner_serial_op_id] = dist_op

    def get_dist_tensor_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
458 459 460 461 462
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor
        else:
            serial_tensor_id = serial_tensor.desc.original_id()
463
            dist_tensor = self._dist_tensors_for_program.get(
464 465
                serial_tensor_id, None
            )
466 467 468 469
            if dist_tensor:
                return dist_tensor
            else:
                return None
470 471

    def get_dist_tensor_for_graph(self, serial_tensor_node):
472
        serial_tensor_node_id = _node_id(serial_tensor_node)
473 474
        return self._dist_tensors_for_graph.get(serial_tensor_node_id, None)

475 476 477 478 479 480 481 482 483 484 485 486
    def get_dist_op_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op
        else:
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op
            else:
                return None
487

488 489 490 491 492
    def del_dist_op_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        if self._dist_ops_for_program.get(serial_tensor_id, None):
            del self._dist_ops_for_program[serial_tensor_id]

493
    def get_dist_op_for_graph(self, serial_op_node):
494
        serial_op_node_id = _node_id(serial_op_node)
495
        return self._dist_ops_for_graph.get(serial_op_node_id, None)
496 497 498 499 500 501 502

    def get_tensor_dist_attr_for_program(self, serial_tensor):
        serial_tensor_id = serial_tensor.desc.id()
        dist_tensor = self._dist_tensors_for_program.get(serial_tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
503
            serial_tensor_id = serial_tensor.desc.original_id()
504
            dist_tensor = self._dist_tensors_for_program.get(
505 506
                serial_tensor_id, None
            )
507 508 509 510
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
511

512 513 514 515 516 517 518
    def get_tensor_dist_attr_for_program_with_id(self, tensor_id):
        dist_tensor = self._dist_tensors_for_program.get(tensor_id, None)
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

519 520 521 522 523
    def set_tensor_dist_attr_for_program(self, serial_tensor, dist_attr):
        dist_tensor = DistributedTensor(serial_tensor, dist_attr)
        self.add_dist_tensor_for_program(dist_tensor)

    def get_tensor_dist_attr_for_graph(self, serial_tensor_node):
524
        serial_tensor_node_id = _node_id(serial_tensor_node)
525 526 527
        dist_tensor = self._dist_tensors_for_graph.get(
            serial_tensor_node_id, None
        )
528 529 530 531 532 533 534 535 536 537 538
        if dist_tensor:
            return dist_tensor.dist_attr
        else:
            return None

    def get_op_dist_attr_for_program(self, serial_op):
        serial_op_id = serial_op.desc.id()
        dist_op = self._dist_ops_for_program.get(serial_op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
539 540 541 542 543 544
            serial_op_id = serial_op.desc.original_id()
            dist_op = self._dist_ops_for_program.get(serial_op_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
545

546 547 548 549 550 551 552
    def get_op_dist_attr_for_program_with_id(self, op_id):
        dist_op = self._dist_ops_for_program.get(op_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

553 554 555 556 557
    def set_op_dist_attr_for_program(self, serial_op, dist_attr):
        dist_op = DistributedOperator(serial_op, dist_attr)
        self.add_dist_op_for_program(dist_op)

    def get_op_dist_attr_for_graph(self, serial_op_node):
558
        serial_op_node_id = _node_id(serial_op_node)
559 560 561 562 563 564
        dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
        if dist_op:
            return dist_op.dist_attr
        else:
            return None

565 566
    def get_dist_attr_for_graph(self, serial_node):
        if serial_node.is_var() and serial_node.var() is not None:
567
            serial_tensor_node_id = _node_id(serial_node)
568
            dist_tensor = self._dist_tensors_for_graph.get(
569 570
                serial_tensor_node_id, None
            )
571 572 573 574 575
            if dist_tensor:
                return dist_tensor.dist_attr
            else:
                return None
        if serial_node.is_op() and serial_node.op() is not None:
576
            serial_op_node_id = _node_id(serial_node)
577 578 579 580 581 582
            dist_op = self._dist_ops_for_graph.get(serial_op_node_id, None)
            if dist_op:
                return dist_op.dist_attr
            else:
                return None
        return None
583

584
    def _init_dist_attr_for_program(self, no_default=False):
585
        # Copy the dist tensors and dist ops annotated by users from the default context
586 587 588 589 590
        if not no_default:
            default_ctx = get_default_distributed_context()
            self._process_meshes = copy.deepcopy(default_ctx.process_meshes)
        else:
            default_ctx = self
591 592
        # Copy the data parallel flag from the default context
        self._data_parallel = default_ctx.data_parallel
593
        for block in self._serial_main_program.blocks:
594 595 596
            for tensor in block.vars.values():
                # Copy the distributed tensors in the default context
                default_dist_tensor = default_ctx.get_dist_tensor_for_program(
597 598
                    tensor
                )
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
                if default_dist_tensor and default_ctx is not self:
                    self.add_dist_tensor_for_program(default_dist_tensor)
                current_dist_tensor = self.get_dist_tensor_for_program(tensor)
                if current_dist_tensor is None:
                    dist_tensor = DistributedTensor(tensor)
                    self.add_dist_tensor_for_program(dist_tensor)
            for op in block.ops:
                # Copy the distributed operators in the default context
                default_dist_op = default_ctx.get_dist_op_for_program(op)
                if default_dist_op and default_ctx is not self:
                    self.add_dist_op_for_program(default_dist_op)
                current_dist_op = self.get_dist_op_for_program(op)
                if current_dist_op is None:
                    dist_op = DistributedOperator(op)
                    self.add_dist_op_for_program(dist_op)
614
        self._original_dist_tensors_for_program = copy.deepcopy(
615 616
            self._dist_tensors_for_program
        )
617
        self._original_dist_ops_for_program = copy.deepcopy(
618 619
            self._dist_ops_for_program
        )
620

621
    def _order_nodes_by_program_order(self):
622 623
        def _contains(nodes, target_node):
            for node in nodes:
624
                if _node_id(node) == _node_id(target_node):
625 626 627
                    return True
            return False

628 629 630 631 632 633
        serial_ordered_tensor_nodes = []
        serial_ordered_op_nodes = []
        all_nodes = []
        for idx, graph in enumerate(self._serial_graph.all_sub_graphs()):
            for node in graph.all_nodes():
                all_nodes.append(node)
634 635
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
636
                serial_ordered_tensor_nodes.append(node)
637
            if node.is_op() and node.op() is not None:
638 639
                serial_ordered_op_nodes.append(node)
        serial_ordered_tensor_nodes.sort(
640 641
            key=lambda node: node.node.original_desc_id()
        )
642
        serial_ordered_op_nodes.sort(
643 644
            key=lambda node: node.node.original_desc_id()
        )
645
        num_nodes_before = len(serial_ordered_tensor_nodes) + len(
646 647
            serial_ordered_op_nodes
        )
648 649 650

        new_serial_ordered_tensor_nodes = []
        new_serial_ordered_op_nodes = []
651
        new_serial_ordered_nodes = []
652
        for op_node in serial_ordered_op_nodes:
653 654
            tensor_nodes = []
            for tensor_node in op_node.inputs:
655 656 657 658 659
                if (
                    tensor_node.is_var()
                    and tensor_node.var() is not None
                    and not _contains(new_serial_ordered_nodes, tensor_node)
                ):
660
                    tensor_nodes.append(tensor_node)
661
                    new_serial_ordered_tensor_nodes.append(tensor_node)
662
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
663 664
            new_serial_ordered_nodes.extend(tensor_nodes)
            new_serial_ordered_nodes.append(op_node)
665
            new_serial_ordered_op_nodes.append(op_node)
666 667
            tensor_nodes = []
            for tensor_node in op_node.outputs:
668 669 670 671 672
                if (
                    tensor_node.is_var()
                    and tensor_node.var() is not None
                    and not _contains(new_serial_ordered_nodes, tensor_node)
                ):
673
                    tensor_nodes.append(tensor_node)
674 675
                    new_serial_ordered_tensor_nodes.append(tensor_node)
            tensor_nodes.sort(key=lambda node: node.node.original_desc_id())
676
            new_serial_ordered_nodes.extend(tensor_nodes)
677
        new_serial_ordered_tensor_nodes.sort(
678 679
            key=lambda node: node.node.original_desc_id()
        )
680
        new_serial_ordered_op_nodes.sort(
681 682
            key=lambda node: node.node.original_desc_id()
        )
683 684
        self._serial_ordered_tensor_nodes = new_serial_ordered_tensor_nodes
        self._serial_ordered_op_nodes = new_serial_ordered_op_nodes
685
        self._serial_ordered_nodes = new_serial_ordered_nodes
686
        assert len(self._serial_ordered_nodes) == len(
687 688
            self._serial_ordered_tensor_nodes
        ) + len(self._serial_ordered_op_nodes)
689 690 691 692 693 694 695 696
        self._serial_orphan_tensor_nodes = []
        for tensor_node in serial_ordered_tensor_nodes:
            if not _contains(self._serial_ordered_tensor_nodes, tensor_node):
                self._serial_orphan_tensor_nodes.append(tensor_node)
        if len(self._serial_ordered_nodes) != num_nodes_before:
            print(
                "WARNING: there are some orphan tensors or ops which are not used in the execution."
            )
697

698 699 700
    def _init_dist_attr_for_graph(self):
        # Convert program to graph and initialize the distributed attributes
        self._order_nodes_by_program_order()
701
        for node in self.serial_ordered_nodes:
702
            if node.is_var() and node.var() is not None:
703 704
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
705 706 707 708 709 710 711 712 713
                for (
                    cur_tensor_id,
                    cur_dist_tensor,
                ) in self._dist_tensors_for_program.items():
                    if (
                        tensor_id == cur_tensor_id
                        or tensor_id
                        == cur_dist_tensor.serial_tensor.desc.original_id()
                    ):
714
                        dist_tensor = cur_dist_tensor
715 716 717 718 719 720
                        self._node_id_to_tensor_id[
                            _node_id(node)
                        ] = cur_tensor_id
                assert (
                    dist_tensor is not None
                ), "Tensor must have a distributed tensor after the initialization for program."
721
                serial_tensor_node_id = _node_id(node)
722 723 724
                new_dist_tensor = DistributedTensor(
                    dist_tensor.serial_tensor, dist_tensor.dist_attr
                )
725
                self._dist_tensors_for_graph[
726 727
                    serial_tensor_node_id
                ] = new_dist_tensor
728
            if node.is_op() and node.op() is not None:
729 730
                dist_op = None
                op_id = node.node.original_desc_id()
731 732 733 734 735 736 737 738
                for (
                    cur_op_id,
                    cur_dist_op,
                ) in self._dist_ops_for_program.items():
                    if (
                        op_id == cur_op_id
                        or op_id == cur_dist_op.serial_op.desc.original_id()
                    ):
739
                        dist_op = cur_dist_op
740
                        self._node_id_to_op_id[_node_id(node)] = cur_op_id
741 742 743
                assert (
                    dist_op is not None
                ), "Operator must have a distributed operator after the initialization for program."
744
                serial_op_node_id = _node_id(node)
745 746 747
                new_dist_op = DistributedOperator(
                    dist_op.serial_op, dist_op.dist_attr
                )
748
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op
749 750 751 752 753 754 755 756 757

    def clear_dist_info_for_program(self):
        self._dist_tensors_for_program.clear()
        self._dist_ops_for_program.clear()

    def clear_dist_info_for_graph(self):
        self._dist_tensors_for_graph.clear()
        self._dist_ops_for_graph.clear()

758 759 760 761 762
    def copy_dist_attr_from_program_to_graph(self):
        for node in self.serial_ordered_nodes:
            if node.is_var() and node.var() is not None:
                dist_tensor = None
                tensor_id = node.node.original_desc_id()
763 764 765 766 767 768 769 770 771
                for (
                    cur_tensor_id,
                    cur_dist_tensor,
                ) in self._dist_tensors_for_program.items():
                    if (
                        tensor_id == cur_tensor_id
                        or tensor_id
                        == cur_dist_tensor.serial_tensor.desc.original_id()
                    ):
772
                        dist_tensor = cur_dist_tensor
773 774 775
                assert (
                    dist_tensor is not None
                ), "Tensor must have a distributed tensor after the initialization for program."
776
                serial_tensor_node_id = _node_id(node)
777 778 779
                new_dist_tensor = DistributedTensor(
                    dist_tensor.serial_tensor, dist_tensor.dist_attr
                )
780
                self._dist_tensors_for_graph[
781 782
                    serial_tensor_node_id
                ] = new_dist_tensor
783 784 785
            if node.is_op() and node.op() is not None:
                dist_op = None
                op_id = node.node.original_desc_id()
786 787 788 789 790 791 792 793
                for (
                    cur_op_id,
                    cur_dist_op,
                ) in self._dist_ops_for_program.items():
                    if (
                        op_id == cur_op_id
                        or op_id == cur_dist_op.serial_op.desc.original_id()
                    ):
794
                        dist_op = cur_dist_op
795 796 797
                assert (
                    dist_op is not None
                ), "Operator must have a distributed operator after the initialization for program."
798
                serial_op_node_id = _node_id(node)
799 800 801
                new_dist_op = DistributedOperator(
                    dist_op.serial_op, dist_op.dist_attr
                )
802 803
                self._dist_ops_for_graph[serial_op_node_id] = new_dist_op

804
    def copy_dist_attr_from_graph_to_program(self):
805 806 807
        assert (
            self._is_initialized
        ), "Both program and graph must be initialized."
808
        updated_tensors = {}
809 810
        # all_nodes = self._serial_graph.all_nodes()
        all_nodes = self._serial_ordered_nodes
811 812
        for node in all_nodes:
            if node.is_var() and node.var() is not None:
813
                tensor_id = self._node_id_to_tensor_id[_node_id(node)]
814
                updated = updated_tensors.get(tensor_id, False)
815 816
                # If a var has multiples var nodes in graph, only use the first one for now
                if not updated:
817 818 819
                    tensor_dist_attr_for_graph = (
                        self.get_tensor_dist_attr_for_graph(node)
                    )
820
                    dist_tensor_for_program = self._dist_tensors_for_program[
821 822 823 824 825
                        tensor_id
                    ]
                    dist_tensor_for_program.dist_attr = (
                        tensor_dist_attr_for_graph
                    )
826
                    updated_tensors[tensor_id] = True
827
            if node.is_op() and node.op() is not None:
828
                op_id = self._node_id_to_op_id[_node_id(node)]
829 830 831
                op_dist_attr_for_graph = self.get_op_dist_attr_for_graph(node)
                dist_op_for_program = self._dist_ops_for_program[op_id]
                dist_op_for_program.dist_attr = op_dist_attr_for_graph
832
        # TODO: the completion algorithm will skipped orphan tensors,
833 834 835
        # here we just set there process_mesh to the first one.
        for orphan_node in self._serial_orphan_tensor_nodes:
            serial_tensor_id = orphan_node.var().id()
836
            dist_tensor = self._dist_tensors_for_program.get(
837 838
                serial_tensor_id, None
            )
839 840 841 842 843
            if dist_tensor:
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
            else:
                serial_tensor_id = orphan_node.var().original_id()
                dist_tensor = self._dist_tensors_for_program.get(
844 845
                    serial_tensor_id, None
                )
846
                dist_tensor.dist_attr.process_mesh = self._process_meshes[0]
847 848 849 850 851

    def amend_dist_attr_for_program(self):
        for dist_tensor in self._dist_tensors_for_program.values():
            serial_tensor = dist_tensor.serial_tensor
            dist_attr = dist_tensor.dist_attr
852 853 854 855 856
            if (
                serial_tensor.type == core.VarDesc.VarType.READER
                or serial_tensor.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                or serial_tensor.type == core.VarDesc.VarType.STEP_SCOPES
            ):
857 858 859 860 861
                tensor_shape = []
            else:
                tensor_shape = serial_tensor.shape
            dims_mapping = dist_attr.dims_mapping
            process_mesh_shape = dist_attr.process_mesh.topology
862
            process_mesh_processes = dist_attr.process_mesh.processes
863 864 865
            # If the dimension of tensor is less than the sharding dimension of process mesh,
            # we just amend the dimension mapping to -1. (Is this really OK?)
            for i in range(len(tensor_shape)):
866 867 868 869 870
                if (
                    dims_mapping[i] != -1
                    and tensor_shape[i] > 0
                    and process_mesh_shape[dims_mapping[i]] > tensor_shape[i]
                ):
871
                    dims_mapping[i] = -1
872 873
                if dims_mapping[i] != -1 and len(process_mesh_processes) == 1:
                    dims_mapping[i] = -1
874 875 876 877

        for dist_op in self._dist_ops_for_program.values():
            serial_op = dist_op.serial_op
            dist_attr = dist_op.dist_attr
878 879
            process_mesh_shape = dist_attr.process_mesh.topology
            process_mesh_processes = dist_attr.process_mesh.processes
880 881 882 883
            for arg_name in serial_op.input_arg_names:
                if dist_op.get_serial_input(arg_name) is None:
                    tensor_shape = []
                else:
884 885 886 887 888 889 890
                    if (
                        dist_op.get_serial_input(arg_name).type
                        == core.VarDesc.VarType.READER
                        or dist_op.get_serial_input(arg_name).type
                        == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                        or dist_op.serial_op.type == "create_py_reader"
                    ):
891 892 893 894 895 896 897
                        tensor_shape = []
                    else:
                        tensor_shape = dist_op.get_serial_input(arg_name).shape
                dims_mapping = dist_attr.get_input_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
898 899 900 901 902 903
                    if (
                        dims_mapping[i] != -1
                        and tensor_shape[i] > 0
                        and process_mesh_shape[dims_mapping[i]]
                        > tensor_shape[i]
                    ):
904
                        dims_mapping[i] = -1
905 906 907 908
                    if (
                        dims_mapping[i] != -1
                        and len(process_mesh_processes) == 1
                    ):
909
                        dims_mapping[i] = -1
910
            for arg_name in serial_op.output_arg_names:
911 912 913 914 915 916 917 918
                if (
                    dist_op.get_serial_output(arg_name).type
                    == core.VarDesc.VarType.READER
                    or dist_op.get_serial_output(arg_name).type
                    == core.VarDesc.VarType.LOD_TENSOR_ARRAY
                    or dist_op.get_serial_output(arg_name).type
                    == core.VarDesc.VarType.STEP_SCOPES
                ):
919 920 921 922 923 924 925
                    tensor_shape = []
                else:
                    tensor_shape = dist_op.get_serial_output(arg_name).shape
                dims_mapping = dist_attr.get_output_dims_mapping(arg_name)
                # If the dimension of tensor is less than the sharding dimension of process mesh,
                # we just amend the dimension mapping to -1. (Is this really OK?)
                for i in range(len(tensor_shape)):
926 927 928 929 930 931
                    if (
                        dims_mapping[i] != -1
                        and tensor_shape[i] > 0
                        and process_mesh_shape[dims_mapping[i]]
                        > tensor_shape[i]
                    ):
932
                        dims_mapping[i] = -1
933 934 935 936
                    if (
                        dims_mapping[i] != -1
                        and len(process_mesh_processes) == 1
                    ):
937 938 939 940
                        dims_mapping[i] = -1
            if len(process_mesh_processes) == 1:
                dist_op.dist_attr.impl_type = "default"
                dist_op.dist_attr.impl_idx = 0
941 942

    def validate_dist_attr_for_program(self):
943
        if not self._is_initialized:
944 945 946
            assert (
                False
            ), "Program must be initialized before validating its distributed attributes"
947
        for block in self.serial_main_program.blocks:
948 949
            for tensor in block.vars.values():
                dist_tensor = self.get_dist_tensor_for_program(tensor)
950 951 952 953 954 955 956 957 958 959 960
                assert (
                    dist_tensor is not None
                ), "Tensor {} does not have a distributed attribute.".format(
                    dist_tensor.serial_tensor.name
                )
                if (dist_tensor is not None) and (
                    not dist_tensor.validate_dist_attr()
                ):
                    assert (
                        False
                    ), "Tensor {} (id: {}, original_id: {}) has a wrong distributed attributes {}.".format(
C
caozhou 已提交
961 962 963
                        dist_tensor.serial_tensor.name,
                        dist_tensor.serial_tensor.desc.id(),
                        dist_tensor.serial_tensor.desc.original_id(),
964 965
                        dist_tensor.dist_attr,
                    )
966 967
            for op in block.ops:
                dist_op = self.get_dist_op_for_program(op)
968 969 970 971 972
                assert (
                    dist_op is not None
                ), "Operator {} does not have a distributed attribute.".format(
                    dist_op.serial_op.type
                )
973
                if (dist_op is not None) and (not dist_op.validate_dist_attr()):
974 975 976 977 978 979 980 981
                    assert (
                        False
                    ), "Operator {} (id: {}, original_id: {}) has a wrong distributed attributes {} .".format(
                        dist_op.serial_op.type,
                        dist_op.serial_op.desc.id(),
                        dist_op.serial_op.desc.original_id(),
                        dist_op.dist_attr,
                    )
982 983
        return True

Z
zhaoyingli 已提交
984 985 986 987 988
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
989
            if k in [
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
                "_original_serial_main_program",
                "_original_serial_startup_program",
                "_serial_main_program",
                "_serial_startup_program",
                "_serial_graph",
                "_dist_main_programs",
                "_dist_startup_programs",
                "_serial_ordered_nodes",
                "_serial_ordered_tensor_nodes",
                "_serial_ordered_op_nodes",
                "_original_serial_loss",
                "_original_serial_feed_vars",
                "_original_serial_fetch_vars",
                "_serial_loss",
                "_serial_feed_vars",
                "_serial_fetch_vars",
                "_serial_optimizer",
                "_backup_serial_main_program_stack",
                "_backup_serial_startup_program_stack",
                "_pass_context",
            ]:
Z
zhaoyingli 已提交
1011 1012 1013
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
1014 1015 1016 1017

        # update dist tensor's dist_context
        for key in result._dist_tensors_for_program.keys():
            result._dist_tensors_for_program[key]._dist_context = result
Z
zhaoyingli 已提交
1018 1019
        return result

1020 1021 1022 1023 1024 1025 1026 1027 1028

class DistributedOperatorContext:
    """
    DistributedOperatorContext is used to create a dist op desc in Program.
    Every time to create a new dist op, the context should be updated for it accordingly.
    """

    def __init__(self):
        self._dst_main_program = None
1029
        self._main_block = None
1030
        self._dst_startup_program = None
1031
        self._startup_block = None
1032 1033
        self._cur_src_op = None
        self._cur_dist_attr = None
1034
        self.grad_op_id_to_op_id = {}
1035
        self.grad_var_to_var = defaultdict(dict)
1036
        self._work_block = None
1037
        self.already_init_sync_vars = set()
1038 1039
        self.varname_mapping = None
        self.rank_id = None
1040 1041 1042 1043 1044
        # NOTE Support correct parallelism for high-order differential model.
        # by default exceed_backward_init_op is False and it means we are in Forward phase; After exceed_backward_init_op = True,
        # it means we are in Backward phase.
        # And the final sulotion should be revise high-order differential logic for these two phases in future.
        self._exceed_backward_init_op = False
1045

Z
zhaoyingli 已提交
1046 1047 1048 1049 1050
    def __deepcopy__(self, memo):
        cls = self.__class__
        result = cls.__new__(cls)
        memo[id(self)] = result
        for k, v in self.__dict__.items():
1051
            if k in [
1052 1053 1054 1055 1056 1057
                "_dst_main_program",
                "_dst_startup_program",
                "_cur_src_op",
                "_work_block",
                "_main_block",
                "_startup_block",
1058
            ]:
Z
zhaoyingli 已提交
1059 1060 1061 1062 1063
                setattr(result, k, v)
            else:
                setattr(result, k, copy.deepcopy(v, memo))
        return result

1064 1065
    @property
    def dst_main_program(self):
1066 1067
        return self._dst_main_program

1068 1069 1070 1071
    @dst_main_program.setter
    def dst_main_program(self, prog):
        self._dst_main_program = prog
        self._main_block = prog.blocks[0]
1072

1073 1074 1075
    @property
    def main_block(self):
        return self._main_block
1076

1077 1078 1079
    @property
    def dst_startup_program(self):
        return self._dst_startup_program
1080

1081 1082 1083 1084
    @dst_startup_program.setter
    def dst_startup_program(self, prog):
        self._dst_startup_program = prog
        self._startup_block = prog.blocks[0]
1085

1086 1087 1088
    @property
    def startup_block(self):
        return self._startup_block
1089

1090 1091 1092 1093
    @property
    def work_block(self):
        assert self._work_block is not None
        return self._work_block
1094

1095 1096 1097 1098
    @work_block.setter
    def work_block(self, block):
        assert block is not None
        self._work_block = block
1099

1100 1101 1102
    @property
    def cur_src_op(self):
        assert self._cur_src_op is not None
1103 1104
        return self._cur_src_op

1105 1106 1107
    def in_backward_phase(self):
        return self._exceed_backward_init_op

1108
    def prepare_context(self, src_op):
1109

1110
        self._cur_src_op = src_op
1111

1112 1113 1114
        if is_loss_grad_op(src_op):
            self._exceed_backward_init_op = True

1115 1116 1117 1118 1119
        # build input varname mapping
        kinputs = {}
        for input_name in src_op.desc.input_names():
            varnames = []
            for varname in src_op.desc.input(input_name):
1120 1121
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
1122 1123 1124 1125 1126 1127 1128
            kinputs[input_name] = varnames

        # build output varname mapping
        koutputs = {}
        for output_name in src_op.desc.output_names():
            varnames = []
            for varname in src_op.desc.output(output_name):
1129 1130
                assert varname in self.varname_mapping
                varnames.append(self.varname_mapping[varname])
1131 1132 1133
            koutputs[output_name] = varnames

        return kinputs, koutputs
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152


class BlockState(object):
    def __init__(self):
        self.nblock = 0
        self.forward_indices = []
        self.backward_indices = []
        self.backward_to_forward_index_map = {}

    def parse_forward_blocks(self, program):

        while program.current_block_idx != 0:
            program._rollback()

        assert program.current_block_idx == 0

        for idx, block in enumerate(program.blocks):

            assert idx == block.idx, "index doesn't match"
1153 1154 1155 1156 1157
            assert (
                block.forward_block_idx == -1
            ), "forward_block_idx of forward block [{}] is not [{}]".format(
                idx, block.forward_block_idx
            )
1158 1159 1160 1161 1162 1163 1164 1165
            self.forward_indices.append(idx)
            self.nblock += 1

        assert self.nblock >= 1

    def parse_backward_blocks(self, program):

        assert 0 in self.forward_indices, "forward block idx are{}".format(
1166 1167
            self.forward_indices
        )
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
        self.backward_to_forward_index_map[0] = 0

        for idx, block in enumerate(program.blocks):

            if idx < len(self.forward_indices):
                continue

            assert idx == block.idx, "index doesn't match"
            assert block.forward_block_idx in self.forward_indices
            self.backward_indices.append(idx)
            self.backward_to_forward_index_map[idx] = block.forward_block_idx
            self.nblock += 1

        assert self.nblock == len(program.blocks)