conv_grad_kernel.cu 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangkaihuo 已提交
15
#include "paddle/phi/kernels/sparse/conv_grad_kernel.h"
16

17
#include "glog/logging.h"
18 19 20 21
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/kernel_registry.h"
22
#include "paddle/phi/core/tensor_utils.h"
23
#include "paddle/phi/core/visit_type.h"
24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
26
#include "paddle/phi/kernels/sparse/gpu/conv.cu.h"
27 28 29 30 31 32 33 34 35 36 37 38

namespace phi {
namespace sparse {

// rulebook[3, rulebook_len]:
//[
//  [kernel_index],
//  [in_i],
//  [out_i],
//]
// x_grad = out_grad * transpose(kenrel)
// kernel_grad = transpose(x) * out_grad
39
template <typename T, typename IntT>
Z
zhangkaihuo 已提交
40 41 42
void Conv3dCooGradGPUKernel(const GPUContext& dev_ctx,
                            const SparseCooTensor& x,
                            const DenseTensor& kernel,
43
                            const SparseCooTensor& out,
Z
zhangkaihuo 已提交
44
                            const DenseTensor& rulebook,
45
                            const DenseTensor& counter,
Z
zhangkaihuo 已提交
46 47 48 49 50 51
                            const SparseCooTensor& out_grad,
                            const std::vector<int>& paddings,
                            const std::vector<int>& dilations,
                            const std::vector<int>& strides,
                            const int groups,
                            const bool subm,
52
                            const std::string& key,
Z
zhangkaihuo 已提交
53 54
                            SparseCooTensor* x_grad,
                            DenseTensor* kernel_grad) {
55 56 57 58 59
  const auto& kernel_dims = kernel.dims();
  const int kernel_size = kernel_dims[0] * kernel_dims[1] * kernel_dims[2];
  const int in_channels = kernel_dims[3];
  const int out_channels = kernel_dims[4];

60 61 62 63
  int rulebook_len = 0;
  const IntT* rulebook_ptr = phi::funcs::sparse::GetRulebookPtr<IntT>(
      out, rulebook, key, &rulebook_len);
  const int* counter_ptr = phi::funcs::sparse::GetCounterPtr(out, counter, key);
64 65

  phi::DenseTensor in_features =
66
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
67
  phi::DenseTensor d_x_features =
68
      phi::Empty<T>(dev_ctx, {rulebook_len, in_channels});
69
  phi::DenseTensor out_grad_features =
70
      phi::Empty<T>(dev_ctx, {rulebook_len, out_channels});
71 72 73 74

  T* in_features_ptr = in_features.data<T>();
  T* d_x_features_ptr = d_x_features.data<T>();
  T* out_grad_features_ptr = out_grad_features.data<T>();
75
  *kernel_grad = phi::EmptyLike<T>(dev_ctx, kernel);
76
  T* d_kernel_ptr = kernel_grad->data<T>();
77 78
  phi::backends::gpu::GpuMemsetAsync(
      d_kernel_ptr, 0, sizeof(T) * kernel_grad->numel(), dev_ctx.stream());
79

Z
zhangkaihuo 已提交
80
  int half_kernel_size = kernel_size / 2;
81
  auto blas = phi::funcs::GetBlas<GPUContext, T>(dev_ctx);
82
  DenseTensor x_grad_indices = phi::EmptyLike<IntT>(dev_ctx, x.indices());
83
  DenseTensor x_grad_values = phi::EmptyLike<T>(dev_ctx, x.values());
84
  T* x_grad_values_ptr = x_grad_values.data<T>();
85 86 87 88 89 90
  phi::backends::gpu::GpuMemsetAsync(x_grad_values_ptr,
                                     0,
                                     sizeof(T) * x_grad_values.numel(),
                                     dev_ctx.stream());
  phi::backends::gpu::GpuMemsetAsync(
      d_x_features_ptr, 0, sizeof(T) * d_x_features.numel(), dev_ctx.stream());
91 92
  phi::Copy<GPUContext>(
      dev_ctx, x.indices(), dev_ctx.GetPlace(), false, &x_grad_indices);
93
  x_grad->SetMember(x_grad_indices, x_grad_values, x.dims(), true);
Z
zhangkaihuo 已提交
94

95
  std::vector<int> offsets(kernel_size + 1);
96

97
  int offset = 0, max_count = 0;
98 99
  for (int i = 0; i < kernel_size; i++) {
    offsets[i] = offset;
100
    offset += counter_ptr[i];
Z
zhangkaihuo 已提交
101
    if (i < half_kernel_size) {
102
      max_count = std::max(max_count, counter_ptr[i]);
Z
zhangkaihuo 已提交
103
    }
104 105 106
  }
  offsets[kernel_size] = offset;

Z
zhangkaihuo 已提交
107
  if (subm) {
108 109 110 111 112 113 114 115 116
    phi::funcs::sparse::SubmPreProcess<T, GPUContext>(dev_ctx,
                                                      x,
                                                      kernel,
                                                      out_grad.values(),
                                                      in_channels,
                                                      out_channels,
                                                      half_kernel_size,
                                                      kernel_grad,
                                                      &x_grad_values);
Z
zhangkaihuo 已提交
117 118 119 120 121
    if (max_count == 0) {
      return;
    }
  }

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  int max_voxel = counter_ptr[kernel_size];
  if (!subm) {
    const auto& x_dims = x.dims();
    Dims4D d_x_dims(x_dims[0], x_dims[3], x_dims[2], x_dims[1]);
    int64_t table_size = 1;
    for (int i = 0; i < x_dims.size() - 1; i++) {
      table_size *= x_dims[i];
    }
    DenseTensor in_index_table = phi::Empty<int>(dev_ctx, {table_size + 1});
    int* in_index_table_ptr = in_index_table.data<int>();
    phi::backends::gpu::GpuMemsetAsync(in_index_table_ptr,
                                       0,
                                       sizeof(int) * (table_size + 1),
                                       dev_ctx.stream());
    auto config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x.nnz(), 1);
    GetOutIndexTable<IntT, false>
        <<<config.block_per_grid,
           config.thread_per_block,
           0,
141
           dev_ctx.stream()>>>(x.indices().data<IntT>(),
142 143 144 145 146 147 148 149 150 151 152 153 154 155
                               x.nnz(),
                               d_x_dims,
                               nullptr,
                               in_index_table_ptr,
                               in_index_table_ptr + table_size);

    phi::backends::gpu::GpuMemcpyAsync(&max_voxel,
                                       in_index_table_ptr + table_size,
                                       sizeof(int),
                                       gpuMemcpyDeviceToHost,
                                       dev_ctx.stream());
    dev_ctx.Wait();
  }

156 157 158
  auto config =
      phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, rulebook_len, 1);
  DenseTensor unique_value = phi::Empty<int>(
159
      dev_ctx, {static_cast<int>(x_grad->nnz() * max_voxel * kernel_size * 2)});
160 161 162 163 164 165
  DenseTensor out_index =
      phi::Empty<int>(dev_ctx, {static_cast<int>(x.nnz() * 2)});
  int* out_index_ptr = out_index.data<int>();
  int* unique_value_ptr = unique_value.data<int>();
  phi::backends::gpu::GpuMemsetAsync(
      out_index_ptr, 0, sizeof(int) * x.nnz() * 2, dev_ctx.stream());
Z
zhangkaihuo 已提交
166

167 168 169 170 171
  GroupIndexsV2<<<config.block_per_grid,
                  config.thread_per_block,
                  0,
                  dev_ctx.stream()>>>(rulebook_len,
                                      x.nnz(),
172
                                      kernel_size * max_voxel,
173 174 175 176 177 178
                                      offsets[kernel_size / 2],
                                      rulebook_ptr,
                                      out_index_ptr,
                                      unique_value_ptr);

  GatherV2<T, IntT>(dev_ctx,
179
                    x.values().data<T>(),
180 181 182 183
                    out_index_ptr,
                    unique_value_ptr,
                    x.nnz(),
                    kernel_size,
184
                    max_voxel,
185 186 187 188 189
                    in_channels,
                    2,
                    in_features_ptr);

  Gather<T, IntT>(dev_ctx,
190
                  out_grad.values().data<T>(),
191 192 193 194
                  rulebook_ptr + rulebook_len,
                  rulebook_len,
                  out_channels,
                  out_grad_features_ptr);
Z
zhangkaihuo 已提交
195

196 197
  const T* kernel_ptr = kernel.data<T>();
  for (int i = 0; i < kernel_size; i++) {
198
    if (counter_ptr[i] <= 0 || (subm && i == half_kernel_size)) {
199 200 201
      continue;
    }

202
    const int M = counter_ptr[i];
203 204 205 206 207
    const int K = in_channels;
    const int N = out_channels;
    T* tmp_in_ptr = in_features_ptr + offsets[i] * in_channels;
    T* tmp_out_grad_ptr = out_grad_features_ptr + offsets[i] * out_channels;
    const T* tmp_kernel_ptr = kernel_ptr + i * in_channels * out_channels;
208
    T* tmp_d_x_ptr = d_x_features_ptr + offsets[i] * in_channels;
209 210 211 212 213 214 215
    T* tmp_d_kernel_ptr = d_kernel_ptr + i * in_channels * out_channels;

    // call gemm: d_kernel = transpose(x) * out_grad
    // (in_channels, n) * (n, out_channels)
    blas.GEMM(CblasTrans,
              CblasNoTrans,
              K,
216 217
              N,
              M,
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
              static_cast<T>(1),
              tmp_in_ptr,
              tmp_out_grad_ptr,
              static_cast<T>(0),
              tmp_d_kernel_ptr);

    // call gemm: d_x = out_grad * transpose(kernel)
    // (n, out_channels) * (out_channels, in_channels)
    blas.GEMM(CblasNoTrans,
              CblasTrans,
              M,
              K,
              N,
              static_cast<T>(1),
              tmp_out_grad_ptr,
              tmp_kernel_ptr,
              static_cast<T>(0),
              tmp_d_x_ptr);
  }

  // 4. scatter
239 240 241 242 243 244
  phi::funcs::sparse::ScatterV2<T>(dev_ctx,
                                   d_x_features_ptr,
                                   out_index.data<int>(),
                                   unique_value.data<int>(),
                                   x_grad->nnz(),
                                   kernel_size,
245
                                   max_voxel,
246 247 248
                                   in_channels,
                                   2,
                                   x_grad_values_ptr);
249 250
}

251
template <typename T, typename Context>
Z
zhangkaihuo 已提交
252 253 254
void Conv3dCooGradKernel(const Context& dev_ctx,
                         const SparseCooTensor& x,
                         const DenseTensor& kernel,
255
                         const SparseCooTensor& out,
Z
zhangkaihuo 已提交
256
                         const DenseTensor& rulebook,
257
                         const DenseTensor& counter,
Z
zhangkaihuo 已提交
258 259 260 261 262 263
                         const SparseCooTensor& out_grad,
                         const std::vector<int>& paddings,
                         const std::vector<int>& dilations,
                         const std::vector<int>& strides,
                         const int groups,
                         const bool subm,
264
                         const std::string& key,
Z
zhangkaihuo 已提交
265 266
                         SparseCooTensor* x_grad,
                         DenseTensor* kernel_grad) {
Z
zhangkaihuo 已提交
267
  PD_VISIT_BASE_INTEGRAL_TYPES(
268
      x.indices().dtype(), "Conv3dCooGradGPUKernel", ([&] {
Z
zhangkaihuo 已提交
269 270 271
        Conv3dCooGradGPUKernel<T, data_t>(dev_ctx,
                                          x,
                                          kernel,
272
                                          out,
Z
zhangkaihuo 已提交
273
                                          rulebook,
274
                                          counter,
Z
zhangkaihuo 已提交
275 276 277 278 279 280
                                          out_grad,
                                          paddings,
                                          dilations,
                                          strides,
                                          groups,
                                          subm,
281
                                          key,
Z
zhangkaihuo 已提交
282 283
                                          x_grad,
                                          kernel_grad);
284 285 286
      }));
}

287 288 289
}  // namespace sparse
}  // namespace phi

Z
zhangkaihuo 已提交
290
PD_REGISTER_KERNEL(conv3d_coo_grad,
291 292
                   GPU,
                   ALL_LAYOUT,
Z
zhangkaihuo 已提交
293
                   phi::sparse::Conv3dCooGradKernel,
294 295 296 297 298
                   float,
                   double,
                   phi::dtype::float16) {
  kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}