gpu_info.cc 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/platform/device/gpu/gpu_info.h"
16

W
Wilber 已提交
17
#include <array>
18 19
#include <cstdlib>
#include <mutex>
F
From00 已提交
20
#include <set>
21
#include <vector>
22

23
#include "gflags/gflags.h"
24
#include "paddle/fluid/memory/memory.h"
25
#include "paddle/fluid/platform/cuda_device_guard.h"
26 27 28 29 30
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/lock_guard_ptr.h"
#include "paddle/fluid/platform/macros.h"
#include "paddle/fluid/platform/monitor.h"
#include "paddle/fluid/platform/place.h"
31
#include "paddle/fluid/platform/profiler/mem_tracing.h"
32 33
#include "paddle/fluid/string/split.h"
#include "paddle/phi/backends/gpu/gpu_info.h"
34
#include "paddle/phi/core/flags.h"
35

36 37 38 39 40 41
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/dynload/miopen.h"
#else
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#endif
42

43 44 45 46 47
#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
#endif
W
Wilber 已提交
48

49 50 51 52 53 54
DECLARE_double(fraction_of_gpu_memory_to_use);
DECLARE_uint64(initial_gpu_memory_in_mb);
DECLARE_uint64(reallocate_gpu_memory_in_mb);
DECLARE_bool(enable_cublas_tensor_op_math);
DECLARE_uint64(gpu_memory_limit_mb);

55 56
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log,
                            false,
57 58
                            "Whether to print the message of gpu memory usage "
                            "at exit, mainly used for UT and CI.");
59 60
PADDLE_DEFINE_EXPORTED_bool(enable_gpu_memory_usage_log_mb,
                            true,
61 62
                            "Whether to print the message of gpu memory usage "
                            "MB as a unit of measurement.");
63

64 65 66 67 68 69 70 71
constexpr static float fraction_reserve_gpu_memory = 0.05f;

USE_GPU_MEM_STAT;
namespace paddle {
namespace platform {

void GpuMemoryUsage(size_t *available, size_t *total) {
  size_t actual_available, actual_total;
72 73 74 75
  RecordedGpuMemGetInfo(available,
                        total,
                        &actual_available,
                        &actual_total,
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
                        platform::GetCurrentDeviceId());
}

size_t GpuAvailableMemToAlloc() {
  size_t total = 0;
  size_t available = 0;
  GpuMemoryUsage(&available, &total);
  size_t reserving =
      static_cast<size_t>(fraction_reserve_gpu_memory * available);
  // If available size is less than minimum chunk size, no usable memory exists
  size_t available_to_alloc = available - reserving;
  size_t min_chunk_size = GpuMinChunkSize();
  if (available_to_alloc < min_chunk_size) {
    available_to_alloc = 0;
  }
  VLOG(10) << "GPU usage " << (available >> 20) << "M/" << (total >> 20)
           << "M, " << (available_to_alloc >> 20) << "M available to allocate";
  return available_to_alloc;
}

size_t GpuMaxAllocSize() {
  return std::max(GpuInitAllocSize(), GpuReallocSize());
}

static size_t GpuAllocSize(bool realloc) {
  size_t available_to_alloc = GpuAvailableMemToAlloc();
  PADDLE_ENFORCE_GT(
103 104
      available_to_alloc,
      0,
105 106 107 108 109 110
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  // If FLAGS_initial_gpu_memory_in_mb is 0, then initial memory will be
  // allocated by fraction
  size_t flag_mb = realloc ? FLAGS_reallocate_gpu_memory_in_mb
                           : FLAGS_initial_gpu_memory_in_mb;
  size_t alloc_bytes =
111 112 113
      (flag_mb > 0ul
           ? flag_mb << 20
           : available_to_alloc * FLAGS_fraction_of_gpu_memory_to_use);
114
  PADDLE_ENFORCE_GE(
115 116
      available_to_alloc,
      alloc_bytes,
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
      platform::errors::ResourceExhausted("Not enough available GPU memory."));
  VLOG(10) << "Alloc size is " << (alloc_bytes >> 20)
           << " MiB, is it Re-alloc: " << realloc;
  return alloc_bytes;
}

size_t GpuInitAllocSize() { return GpuAllocSize(/* realloc = */ false); }

size_t GpuReallocSize() { return GpuAllocSize(/* realloc = */ true); }

size_t GpuMaxChunkSize() {
  size_t max_chunk_size = GpuMaxAllocSize();
  VLOG(10) << "Max chunk size " << (max_chunk_size >> 20) << "M";
  return max_chunk_size;
}

static void RaiseNonOutOfMemoryError(gpuError_t *status) {
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);

  *status = platform::GpuGetLastError();
  if (*status == gpuErrorOutOfMemory) {
    *status = gpuSuccess;
  }
  PADDLE_ENFORCE_GPU_SUCCESS(*status);
}

class RecordedGpuMallocHelper {
 private:
  explicit RecordedGpuMallocHelper(int dev_id, uint64_t limit_size = 0)
      : dev_id_(dev_id), limit_size_(limit_size) {
    if (NeedRecord()) {
      mtx_.reset(new std::mutex());
    }
153 154 155 156

    if (FLAGS_enable_gpu_memory_usage_log) {
      // A fake UPDATE to trigger the construction of memory stat instances,
      // make sure that they are destructed after RecordedGpuMallocHelper.
157 158
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id, 0);
      DEVICE_MEMORY_STAT_UPDATE(Allocated, dev_id, 0);
159
    }
160 161 162 163 164
  }

  DISABLE_COPY_AND_ASSIGN(RecordedGpuMallocHelper);

 public:
165 166
  ~RecordedGpuMallocHelper() {
    if (FLAGS_enable_gpu_memory_usage_log) {
167 168
      if (FLAGS_enable_gpu_memory_usage_log_mb) {
        std::cout << "[Memory Usage (MB)] gpu " << dev_id_ << " : Reserved = "
169 170
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_) /
                         1048576.0
171
                  << ", Allocated = "
172 173
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_) /
                         1048576.0
174 175 176
                  << std::endl;
      } else {
        std::cout << "[Memory Usage (Byte)] gpu " << dev_id_ << " : Reserved = "
177
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Reserved, dev_id_)
178
                  << ", Allocated = "
179 180
                  << DEVICE_MEMORY_STAT_PEAK_VALUE(Allocated, dev_id_)
                  << std::endl;
181
      }
182 183 184
    }
  }

185
  static RecordedGpuMallocHelper *Instance(int dev_id) {
186 187
    static std::vector<std::unique_ptr<RecordedGpuMallocHelper>> instances_;

188 189 190 191 192 193 194 195 196 197
    std::call_once(once_flag_, [] {
      int dev_cnt = GetGPUDeviceCount();
      instances_.reserve(dev_cnt);
      for (int i = 0; i < dev_cnt; ++i) {
        instances_.emplace_back(
            new RecordedGpuMallocHelper(i, FLAGS_gpu_memory_limit_mb << 20));
      }
    });

    PADDLE_ENFORCE_GE(
198 199
        dev_id,
        0,
200 201 202
        platform::errors::OutOfRange(
            "Device id must be not less than 0, but got %d.", dev_id));
    PADDLE_ENFORCE_LT(
203 204
        dev_id,
        instances_.size(),
205
        platform::errors::OutOfRange("Device id %d exceeds gpu card number %d.",
206 207
                                     dev_id,
                                     instances_.size()));
208 209 210 211 212 213 214 215
    return instances_[dev_id].get();
  }

  /**
   * Try to allocate `size` gpu memory. Only cudaErrorMemoryAllocation
   * or cudaSuccess would be returned, and the cudaGetLastError() flag
   * would be clear.
   */
216 217
  gpuError_t Malloc(void **ptr,
                    size_t size,
218
                    bool malloc_managed_memory = false) {
219 220 221 222 223 224
    LockGuardPtr<std::mutex> lock(mtx_);
    if (UNLIKELY(NeedRecord() && cur_size_.load() + size > limit_size_)) {
      return gpuErrorOutOfMemory;
    }

    CUDADeviceGuard guard(dev_id_);
225
    gpuError_t result;
226
#ifdef PADDLE_WITH_HIP
227 228 229 230 231
    if (UNLIKELY(malloc_managed_memory)) {
      result = hipMallocManaged(ptr, size);
    } else {
      result = hipMalloc(ptr, size);
    }
232 233
#else
    CUDAGraphCaptureModeGuard capture_mode_guard;
234 235 236 237
    if (UNLIKELY(malloc_managed_memory)) {
      result = cudaMallocManaged(ptr, size);
    } else {
      result = cudaMalloc(ptr, size);
238 239
      VLOG(10) << "[cudaMalloc] size=" << static_cast<double>(size) / (1 << 20)
               << " MB, result=" << result;
240
    }
241 242 243 244
#endif
    if (result == gpuSuccess) {
      cur_size_.fetch_add(size);
      STAT_INT_ADD("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
245
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, size);
246 247 248 249
      platform::RecordMemEvent(ptr,
                               GPUPlace(dev_id_),
                               size,
                               platform::TracerMemEventType::ReservedAllocate);
F
From00 已提交
250 251 252 253
#ifdef PADDLE_WITH_TESTING
      gpu_ptrs.insert(*ptr);
#endif

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
      return gpuSuccess;
    } else {
      RaiseNonOutOfMemoryError(&result);
      // Non out of memory error would be raised inside
      // RaiseNonOutOfMemoryError. Therefore, we can
      // return cudaErrorMemoryAllocation directly here.
      return gpuErrorOutOfMemory;
    }
  }

  /**
   * Free gpu memory. Usually, free is not allowed to raise error.
   * If it does raise error, the process should be crashed.
   */
  void Free(void *ptr, size_t size) {
    // Purposefully allow cudaErrorCudartUnloading, because
    // that is returned if you ever call cudaFree after the
    // driver has already shutdown. This happens only if the
    // process is terminating, in which case we don't care if
    // cudaFree succeeds.
    CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
    auto err = hipFree(ptr);
    if (err != hipErrorDeinitialized) {
#else
    auto err = cudaFree(ptr);
280 281
    VLOG(10) << "[cudaFree] size=" << static_cast<double>(size) / (1 << 20)
             << " MB";
282 283 284 285 286
    if (err != cudaErrorCudartUnloading) {
#endif
      PADDLE_ENFORCE_GPU_SUCCESS(err);
      cur_size_.fetch_sub(size);
      STAT_INT_SUB("STAT_gpu" + std::to_string(dev_id_) + "_mem_size", size);
287
      DEVICE_MEMORY_STAT_UPDATE(Reserved, dev_id_, -size);
288 289 290 291
      platform::RecordMemEvent(ptr,
                               GPUPlace(dev_id_),
                               size,
                               platform::TracerMemEventType::ReservedFree);
292 293 294 295 296
    } else {
      platform::GpuGetLastError();  // clear the error flag when
                                    // cudaErrorCudartUnloading /
                                    // hipErrorDeinitialized
    }
F
From00 已提交
297 298 299 300 301 302
#ifdef PADDLE_WITH_TESTING
    gpu_ptrs.erase(ptr);
#endif
  }

  void *GetBasePtr(void *ptr) {
F
From00 已提交
303
#ifdef PADDLE_WITH_TESTING
F
From00 已提交
304 305 306 307 308
    auto it = gpu_ptrs.upper_bound(ptr);
    if (it == gpu_ptrs.begin()) {
      return nullptr;
    }
    return *(--it);
F
From00 已提交
309 310 311 312 313
#else
    PADDLE_THROW(platform::errors::Unimplemented(
        "The RecordedGpuMallocHelper::GetBasePtr is only implemented with "
        "testing, should not use for release."));
    return nullptr;
F
From00 已提交
314
#endif
F
From00 已提交
315
  }
316

317 318 319
  bool GetMemInfo(size_t *avail,
                  size_t *total,
                  size_t *actual_avail,
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
                  size_t *actual_total) {
    {
      CUDADeviceGuard guard(dev_id_);
#ifdef PADDLE_WITH_HIP
      auto result = hipMemGetInfo(actual_avail, actual_total);
#else
      auto result = cudaMemGetInfo(actual_avail, actual_total);
#endif
      if (result != gpuSuccess) {
        *actual_avail = 0;
      }
      RaiseNonOutOfMemoryError(&result);
    }

    if (NeedRecord()) {
      std::lock_guard<std::mutex> guard(*mtx_);
      *avail = std::min(*actual_avail, limit_size_ - cur_size_.load());
      *total = std::min(*actual_total, limit_size_);
      return *total < *actual_total;
    } else {
      *avail = *actual_avail;
      *total = *actual_total;
      return false;
    }
  }

  inline bool NeedRecord() const { return limit_size_ != 0; }

  uint64_t RecordedSize() const { return cur_size_.load(); }

  uint64_t LimitSize() const { return limit_size_; }

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
354 355
  CUresult MemCreate(CUmemGenericAllocationHandle *handle,
                     size_t size,
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
                     const CUmemAllocationProp *prop,
                     unsigned long long flags) {  // NOLINT
    auto result =
        paddle::platform::dynload::cuMemCreate(handle, size, prop, flags);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_add(size);
    }
    return result;
  }

  CUresult MemRelease(CUmemGenericAllocationHandle handle, size_t size) {
    auto result = paddle::platform::dynload::cuMemRelease(handle);
    if (result == CUDA_SUCCESS) {
      cur_size_.fetch_sub(size);
    }
    return result;
  }

#endif
#endif

 private:
  const int dev_id_;
  const uint64_t limit_size_;
  std::atomic<uint64_t> cur_size_{0};

  mutable std::unique_ptr<std::mutex> mtx_;

  static std::once_flag once_flag_;
F
From00 已提交
385 386 387

  std::set<void *> gpu_ptrs;  // just for testing
};                            // NOLINT
388 389 390

std::once_flag RecordedGpuMallocHelper::once_flag_;

391 392 393
gpuError_t RecordedGpuMalloc(void **ptr,
                             size_t size,
                             int dev_id,
394 395 396
                             bool malloc_managed_memory) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Malloc(
      ptr, size, malloc_managed_memory);
397 398 399 400 401 402 403 404
}

void RecordedGpuFree(void *p, size_t size, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->Free(p, size);
}

#ifdef PADDLE_WITH_CUDA
#if CUDA_VERSION >= 10020
405 406
CUresult RecordedGpuMemCreate(CUmemGenericAllocationHandle *handle,
                              size_t size,
407
                              const CUmemAllocationProp *prop,
408 409
                              unsigned long long flags,  // NOLINT
                              int dev_id) {
410 411
  return RecordedGpuMallocHelper::Instance(dev_id)->MemCreate(
      handle, size, prop, flags);
412 413
}

414 415
CUresult RecordedGpuMemRelease(CUmemGenericAllocationHandle handle,
                               size_t size,
416 417 418 419 420 421
                               int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->MemRelease(handle, size);
}
#endif
#endif

422 423 424 425 426
bool RecordedGpuMemGetInfo(size_t *avail,
                           size_t *total,
                           size_t *actual_avail,
                           size_t *actual_total,
                           int dev_id) {
427 428 429 430 431 432 433 434
  return RecordedGpuMallocHelper::Instance(dev_id)->GetMemInfo(
      avail, total, actual_avail, actual_total);
}

uint64_t RecordedGpuMallocSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->RecordedSize();
}

435 436 437 438
uint64_t RecordedGpuLimitSize(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->LimitSize();
}

439 440 441 442 443 444 445 446 447 448 449
bool IsGpuMallocRecorded(int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->NeedRecord();
}

void EmptyCache(void) {
  std::vector<int> devices = GetSelectedDevices();
  for (auto device : devices) {
    memory::Release(CUDAPlace(device));
  }
}

450
bool IsGPUManagedMemorySupported(int dev_id) {
451
  return phi::backends::gpu::IsGPUManagedMemorySupported(dev_id);
452 453 454
}

bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) {
455
  return phi::backends::gpu::IsGPUManagedMemoryOversubscriptionSupported(
456 457 458
      dev_id);
}

F
From00 已提交
459 460 461 462
void *GetGpuBasePtr(void *ptr, int dev_id) {
  return RecordedGpuMallocHelper::Instance(dev_id)->GetBasePtr(ptr);
}

463
int DnnVersion() { return phi::backends::gpu::DnnVersion(); }
W
Wilber 已提交
464

465
int GetGPUDeviceCount() { return phi::backends::gpu::GetGPUDeviceCount(); }
W
Wilber 已提交
466 467

int GetGPUComputeCapability(int id) {
468
  return phi::backends::gpu::GetGPUComputeCapability(id);
W
Wilber 已提交
469 470 471
}

int GetGPURuntimeVersion(int id) {
472
  return phi::backends::gpu::GetGPURuntimeVersion(id);
W
Wilber 已提交
473 474 475
}

int GetGPUDriverVersion(int id) {
476
  return phi::backends::gpu::GetGPUDriverVersion(id);
W
Wilber 已提交
477 478
}

479
bool TensorCoreAvailable() { return phi::backends::gpu::TensorCoreAvailable(); }
W
Wilber 已提交
480 481

int GetGPUMultiProcessors(int id) {
482
  return phi::backends::gpu::GetGPUMultiProcessors(id);
W
Wilber 已提交
483 484 485
}

int GetGPUMaxThreadsPerMultiProcessor(int id) {
486
  return phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(id);
W
Wilber 已提交
487 488 489
}

int GetGPUMaxThreadsPerBlock(int id) {
490
  return phi::backends::gpu::GetGPUMaxThreadsPerBlock(id);
W
Wilber 已提交
491 492
}

493
int GetCurrentDeviceId() { return phi::backends::gpu::GetCurrentDeviceId(); }
W
Wilber 已提交
494 495

std::array<int, 3> GetGpuMaxGridDimSize(int id) {
496
  return phi::backends::gpu::GetGpuMaxGridDimSize(id);
W
Wilber 已提交
497 498 499
}

std::vector<int> GetSelectedDevices() {
500
  return phi::backends::gpu::GetSelectedDevices();
W
Wilber 已提交
501 502 503
}

const gpuDeviceProp &GetDeviceProperties(int id) {
504
  return phi::backends::gpu::GetDeviceProperties(id);
W
Wilber 已提交
505 506
}

507
void SetDeviceId(int device_id) { phi::backends::gpu::SetDeviceId(device_id); }
W
Wilber 已提交
508

509
gpuError_t GpuGetLastError() { return phi::backends::gpu::GpuGetLastError(); }
W
Wilber 已提交
510 511

void GpuStreamSync(gpuStream_t stream) {
512
  phi::backends::gpu::GpuStreamSync(stream);
W
Wilber 已提交
513 514 515
}

void GpuDestroyStream(gpuStream_t stream) {
516
  phi::backends::gpu::GpuDestroyStream(stream);
W
Wilber 已提交
517 518
}

519
void GpuDeviceSync() { phi::backends::gpu::GpuDeviceSync(); }
W
Wilber 已提交
520

521 522 523 524 525
void GpuMemcpyAsync(void *dst,
                    const void *src,
                    size_t count,
                    gpuMemcpyKind kind,
                    gpuStream_t stream) {
526
  phi::backends::gpu::GpuMemcpyAsync(dst, src, count, kind, stream);
W
Wilber 已提交
527 528
}

529 530 531
void GpuMemcpySync(void *dst,
                   const void *src,
                   size_t count,
W
Wilber 已提交
532
                   gpuMemcpyKind kind) {
533
  phi::backends::gpu::GpuMemcpySync(dst, src, count, kind);
W
Wilber 已提交
534 535
}

536 537 538 539 540 541 542 543
void GpuMemcpyPeerAsync(void *dst,
                        int dst_device,
                        const void *src,
                        int src_device,
                        size_t count,
                        gpuStream_t stream) {
  phi::backends::gpu::GpuMemcpyPeerAsync(
      dst, dst_device, src, src_device, count, stream);
W
Wilber 已提交
544 545
}

546 547 548 549
void GpuMemcpyPeerSync(
    void *dst, int dst_device, const void *src, int src_device, size_t count) {
  phi::backends::gpu::GpuMemcpyPeerSync(
      dst, dst_device, src, src_device, count);
W
Wilber 已提交
550 551 552
}

void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) {
553
  phi::backends::gpu::GpuMemsetAsync(dst, value, count, stream);
W
Wilber 已提交
554 555
}

556 557
}  // namespace platform
}  // namespace paddle