test_yolov3_loss_op.py 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

17 18
import unittest
import numpy as np
19 20
from scipy.special import logit
from scipy.special import expit
21 22
from op_test import OpTest

23 24
from paddle.fluid import core

D
dengkaipeng 已提交
25

D
dengkaipeng 已提交
26 27 28 29
def l2loss(x, y):
    return 0.5 * (y - x) * (y - x)


30
def sce(x, label):
31 32 33
    sigmoid_x = expit(x)
    term1 = label * np.log(sigmoid_x)
    term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
34
    return -term1 - term2
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def batch_xywh_box_iou(box1, box2):
    b1_left = box1[:, :, 0] - box1[:, :, 2] / 2
    b1_right = box1[:, :, 0] + box1[:, :, 2] / 2
    b1_top = box1[:, :, 1] - box1[:, :, 3] / 2
    b1_bottom = box1[:, :, 1] + box1[:, :, 3] / 2

    b2_left = box2[:, :, 0] - box2[:, :, 2] / 2
    b2_right = box2[:, :, 0] + box2[:, :, 2] / 2
    b2_top = box2[:, :, 1] - box2[:, :, 3] / 2
    b2_bottom = box2[:, :, 1] + box2[:, :, 3] / 2

    left = np.maximum(b1_left[:, :, np.newaxis], b2_left[:, np.newaxis, :])
    right = np.minimum(b1_right[:, :, np.newaxis], b2_right[:, np.newaxis, :])
    top = np.maximum(b1_top[:, :, np.newaxis], b2_top[:, np.newaxis, :])
    bottom = np.minimum(b1_bottom[:, :, np.newaxis],
                        b2_bottom[:, np.newaxis, :])

    inter_w = np.clip(right - left, 0., 1.)
    inter_h = np.clip(bottom - top, 0., 1.)
    inter_area = inter_w * inter_h

    b1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
    b2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
    union = b1_area[:, :, np.newaxis] + b2_area[:, np.newaxis, :] - inter_area

    return inter_area / union


D
dengkaipeng 已提交
69
def YOLOv3Loss(x, gtbox, gtlabel, attrs):
70 71 72 73 74 75 76 77
    n, c, h, w = x.shape
    b = gtbox.shape[1]
    anchors = attrs['anchors']
    an_num = len(anchors) // 2
    anchor_mask = attrs['anchor_mask']
    mask_num = len(anchor_mask)
    class_num = attrs["class_num"]
    ignore_thresh = attrs['ignore_thresh']
D
dengkaipeng 已提交
78 79
    downsample_ratio = attrs['downsample_ratio']
    input_size = downsample_ratio * h
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
    loss = np.zeros((n)).astype('float32')

    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

    mask_anchors = []
    for m in anchor_mask:
        mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in mask_anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, mask_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, mask_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_box = pred_box.reshape((n, -1, 4))
    pred_obj = x[:, :, :, :, 4].reshape((n, -1))
D
dengkaipeng 已提交
101
    objness = np.zeros(pred_box.shape[:2]).astype('float32')
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    ious = batch_xywh_box_iou(pred_box, gtbox)
    ious_max = np.max(ious, axis=-1)
    objness = np.where(ious_max > ignore_thresh, -np.ones_like(objness),
                       objness)

    gtbox_shift = gtbox.copy()
    gtbox_shift[:, :, 0] = 0
    gtbox_shift[:, :, 1] = 0

    anchors = [(anchors[2 * i], anchors[2 * i + 1]) for i in range(0, an_num)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_boxes = np.concatenate(
        [np.zeros_like(anchors_s), anchors_s], axis=-1)
    anchor_boxes = np.tile(anchor_boxes[np.newaxis, :, :], (n, 1, 1))
    ious = batch_xywh_box_iou(gtbox_shift, anchor_boxes)
    iou_matches = np.argmax(ious, axis=-1)
119
    gt_matches = iou_matches.copy()
120 121 122
    for i in range(n):
        for j in range(b):
            if gtbox[i, j, 2:].sum() == 0:
123
                gt_matches[i, j] = -1
124 125
                continue
            if iou_matches[i, j] not in anchor_mask:
126
                gt_matches[i, j] = -1
127 128
                continue
            an_idx = anchor_mask.index(iou_matches[i, j])
129
            gt_matches[i, j] = an_idx
130 131 132 133 134 135 136
            gi = int(gtbox[i, j, 0] * w)
            gj = int(gtbox[i, j, 1] * h)

            tx = gtbox[i, j, 0] * w - gi
            ty = gtbox[i, j, 1] * w - gj
            tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
            th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
D
dengkaipeng 已提交
137
            scale = (2.0 - gtbox[i, j, 2] * gtbox[i, j, 3])
138 139
            loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
            loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
D
dengkaipeng 已提交
140 141
            loss[i] += l2loss(x[i, an_idx, gj, gi, 2], tw) * scale
            loss[i] += l2loss(x[i, an_idx, gj, gi, 3], th) * scale
142

D
dengkaipeng 已提交
143
            objness[i, an_idx * h * w + gj * w + gi] = 1.0
144 145

            for label_idx in range(class_num):
D
dengkaipeng 已提交
146 147
                loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx],
                               float(label_idx == gtlabel[i, j]))
148 149

        for j in range(mask_num * h * w):
D
dengkaipeng 已提交
150
            if objness[i, j] > 0:
D
dengkaipeng 已提交
151
                loss[i] += sce(pred_obj[i, j], 1.0)
D
dengkaipeng 已提交
152 153
            elif objness[i, j] == 0:
                loss[i] += sce(pred_obj[i, j], 0.0)
154

D
dengkaipeng 已提交
155
    return (loss, objness.reshape((n, mask_num, h, w)).astype('float32'), \
156
            gt_matches.astype('int32'))
157 158


159 160 161 162
class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
163
        x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
164
        gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
D
dengkaipeng 已提交
165 166 167 168
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask
169 170 171

        self.attrs = {
            "anchors": self.anchors,
172
            "anchor_mask": self.anchor_mask,
173 174
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
D
dengkaipeng 已提交
175
            "downsample_ratio": self.downsample_ratio,
176 177
        }

D
dengkaipeng 已提交
178 179 180
        self.inputs = {
            'X': x,
            'GTBox': gtbox.astype('float32'),
D
dengkaipeng 已提交
181
            'GTLabel': gtlabel.astype('int32'),
D
dengkaipeng 已提交
182
        }
D
dengkaipeng 已提交
183
        loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, self.attrs)
184 185 186 187 188
        self.outputs = {
            'Loss': loss,
            'ObjectnessMask': objness,
            "GTMatchMask": gt_matches
        }
189 190

    def test_check_output(self):
191
        place = core.CPUPlace()
D
dengkaipeng 已提交
192
        self.check_output_with_place(place, atol=1e-3)
193

D
dengkaipeng 已提交
194 195 196 197 198
    def test_check_grad_ignore_gtbox(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, ['X'],
            'Loss',
D
dengkaipeng 已提交
199
            no_grad_set=set(["GTBox", "GTLabel"]),
D
dengkaipeng 已提交
200
            max_relative_error=0.3)
201 202

    def initTestCase(self):
D
dengkaipeng 已提交
203 204 205 206
        self.anchors = [10, 13, 16, 30, 33, 23]
        self.anchor_mask = [1, 2]
        self.class_num = 5
        self.ignore_thresh = 0.5
D
dengkaipeng 已提交
207
        self.downsample_ratio = 32
208
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
D
dengkaipeng 已提交
209
        self.gtbox_shape = (3, 5, 4)
210 211 212 213


if __name__ == "__main__":
    unittest.main()