Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c945ffa7
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c945ffa7
编写于
1月 14, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix label_smooth and mixup score
上级
20200e12
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
55 addition
and
60 deletion
+55
-60
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+45
-53
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+10
-7
未找到文件。
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
c945ffa7
...
...
@@ -156,47 +156,29 @@ static void CalcBoxLocationLossGrad(T* input_grad, const T loss, const T* input,
template
<
typename
T
>
static
inline
void
CalcLabelLoss
(
T
*
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
T
score
,
const
int
class_num
,
const
int
stride
,
const
bool
use_label_smooth
)
{
if
(
use_label_smooth
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
]
<
-
0.5
?
input
[
index
+
i
*
stride
]
:
1.0
/
class_num
;
loss
[
0
]
+=
SCE
<
T
>
(
pred
,
(
i
==
label
)
?
score
:
0.0
);
}
}
else
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SCE
<
T
>
(
pred
,
(
i
==
label
)
?
score
:
0.0
);
}
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
loss
[
0
]
+=
SCE
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
);
}
}
template
<
typename
T
>
static
inline
void
CalcLabelLossGrad
(
T
*
input_grad
,
const
T
loss
,
const
T
*
input
,
const
int
index
,
const
int
label
,
const
T
score
,
const
int
class_num
,
const
int
stride
,
const
bool
use_label_smooth
)
{
if
(
use_label_smooth
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
]
<
-
0.5
?
input
[
index
+
i
*
stride
]
:
1.0
/
class_num
;
input_grad
[
index
+
i
*
stride
]
=
SCEGrad
<
T
>
(
pred
,
(
i
==
label
)
?
score
:
0.0
)
*
loss
;
}
}
else
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
SCEGrad
<
T
>
(
pred
,
(
i
==
label
)
?
score
:
0.0
)
*
loss
;
}
const
int
label
,
const
int
class_num
,
const
int
stride
,
const
T
pos
,
const
T
neg
)
{
for
(
int
i
=
0
;
i
<
class_num
;
i
++
)
{
T
pred
=
input
[
index
+
i
*
stride
];
input_grad
[
index
+
i
*
stride
]
=
SCEGrad
<
T
>
(
pred
,
(
i
==
label
)
?
pos
:
neg
)
*
loss
;
}
}
template
<
typename
T
>
static
inline
void
CalcObjnessLoss
(
T
*
loss
,
const
T
*
input
,
const
int
*
objness
,
static
inline
void
CalcObjnessLoss
(
T
*
loss
,
const
T
*
input
,
const
T
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
...
...
@@ -204,9 +186,9 @@ static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
=
0
)
{
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
static_cast
<
T
>
(
obj
)
);
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
-
0.5
)
{
loss
[
i
]
+=
SCE
<
T
>
(
input
[
k
*
w
+
l
],
obj
);
}
}
}
...
...
@@ -218,7 +200,7 @@ static inline void CalcObjnessLoss(T* loss, const T* input, const int* objness,
template
<
typename
T
>
static
inline
void
CalcObjnessLossGrad
(
T
*
input_grad
,
const
T
*
loss
,
const
T
*
input
,
const
int
*
objness
,
const
T
*
input
,
const
T
*
objness
,
const
int
n
,
const
int
an_num
,
const
int
h
,
const
int
w
,
const
int
stride
,
const
int
an_stride
)
{
...
...
@@ -226,10 +208,9 @@ static inline void CalcObjnessLossGrad(T* input_grad, const T* loss,
for
(
int
j
=
0
;
j
<
an_num
;
j
++
)
{
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
int
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>=
0
)
{
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
static_cast
<
T
>
(
obj
))
*
loss
[
i
];
T
obj
=
objness
[
k
*
w
+
l
];
if
(
obj
>
-
0.5
)
{
input_grad
[
k
*
w
+
l
]
=
SCEGrad
<
T
>
(
input
[
k
*
w
+
l
],
obj
)
*
loss
[
i
];
}
}
}
...
...
@@ -285,15 +266,22 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
T
*
gt_score_data
=
gt_score
->
data
<
T
>
();
T
*
loss_data
=
loss
->
mutable_data
<
T
>
({
n
},
ctx
.
GetPlace
());
memset
(
loss_data
,
0
,
loss
->
numel
()
*
sizeof
(
T
));
int
*
obj_mask_data
=
objness_mask
->
mutable_data
<
int
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
obj_mask_data
,
0
,
objness_mask
->
numel
()
*
sizeof
(
int
));
T
*
obj_mask_data
=
objness_mask
->
mutable_data
<
T
>
({
n
,
mask_num
,
h
,
w
},
ctx
.
GetPlace
());
memset
(
obj_mask_data
,
0
,
objness_mask
->
numel
()
*
sizeof
(
T
));
int
*
gt_match_mask_data
=
gt_match_mask
->
mutable_data
<
int
>
({
n
,
b
},
ctx
.
GetPlace
());
...
...
@@ -327,7 +315,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
obj_mask_data
[
obj_idx
]
=
-
1
;
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
-
1.0
)
;
}
// TODO(dengkaipeng): all losses should be calculated if best IoU
// is bigger then truth thresh should be calculated here, but
...
...
@@ -374,15 +362,15 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
CalcBoxLocationLoss
<
T
>
(
loss_data
+
i
,
input_data
,
gt
,
anchors
,
best_n
,
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
obj_idx
=
(
i
*
mask_num
+
mask_idx
)
*
stride
+
gj
*
w
+
gi
;
obj_mask_data
[
obj_idx
]
=
1
;
obj_mask_data
[
obj_idx
]
=
score
;
int
label
=
gt_label_data
[
i
*
b
+
t
];
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
score
,
class_num
,
stride
,
use_label_smooth
);
CalcLabelLoss
<
T
>
(
loss_data
+
i
,
input_data
,
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
);
}
}
}
...
...
@@ -399,7 +387,6 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
gt_score
=
ctx
.
Input
<
Tensor
>
(
"GTScore"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
auto
*
objness_mask
=
ctx
.
Input
<
Tensor
>
(
"ObjectnessMask"
);
...
...
@@ -421,12 +408,18 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
const
int
stride
=
h
*
w
;
const
int
an_stride
=
(
class_num
+
5
)
*
stride
;
T
label_pos
=
1.0
;
T
label_neg
=
0.0
;
if
(
use_label_smooth
)
{
label_pos
=
1.0
-
1.0
/
static_cast
<
T
>
(
class_num
);
label_neg
=
1.0
/
static_cast
<
T
>
(
class_num
);
}
const
T
*
input_data
=
input
->
data
<
T
>
();
const
T
*
gt_box_data
=
gt_box
->
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
->
data
<
int
>
();
const
T
*
gt_score_data
=
gt_score
->
data
<
T
>
();
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
const
int
*
obj_mask_data
=
objness_mask
->
data
<
int
>
();
const
T
*
obj_mask_data
=
objness_mask
->
data
<
T
>
();
const
int
*
gt_match_mask_data
=
gt_match_mask
->
data
<
int
>
();
T
*
input_grad_data
=
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
...
...
@@ -447,12 +440,11 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
anchor_mask
[
mask_idx
],
box_idx
,
gi
,
gj
,
h
,
input_size
,
stride
);
int
label
=
gt_label_data
[
i
*
b
+
t
];
T
score
=
gt_score_data
[
i
*
b
+
t
];
int
label_idx
=
GetEntryIndex
(
i
,
mask_idx
,
gj
*
w
+
gi
,
mask_num
,
an_stride
,
stride
,
5
);
CalcLabelLossGrad
<
T
>
(
input_grad_data
,
loss_grad_data
[
i
],
input_data
,
label_idx
,
label
,
score
,
class_num
,
stride
,
use_label_smooth
);
label_idx
,
label
,
class_num
,
stride
,
label_pos
,
label_neg
);
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
c945ffa7
...
...
@@ -81,6 +81,9 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
x
=
x
.
reshape
((
n
,
mask_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
loss
=
np
.
zeros
((
n
)).
astype
(
'float32'
)
label_pos
=
1.0
-
1.0
/
class_num
if
use_label_smooth
else
1.0
label_neg
=
1.0
/
class_num
if
use_label_smooth
else
0.0
pred_box
=
x
[:,
:,
:,
:,
:
4
].
copy
()
grid_x
=
np
.
tile
(
np
.
arange
(
w
).
reshape
((
1
,
w
)),
(
h
,
1
))
grid_y
=
np
.
tile
(
np
.
arange
(
h
).
reshape
((
h
,
1
)),
(
1
,
w
))
...
...
@@ -103,7 +106,7 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
pred_box
=
pred_box
.
reshape
((
n
,
-
1
,
4
))
pred_obj
=
x
[:,
:,
:,
:,
4
].
reshape
((
n
,
-
1
))
objness
=
np
.
zeros
(
pred_box
.
shape
[:
2
])
objness
=
np
.
zeros
(
pred_box
.
shape
[:
2
])
.
astype
(
'float32'
)
ious
=
batch_xywh_box_iou
(
pred_box
,
gtbox
)
ious_max
=
np
.
max
(
ious
,
axis
=-
1
)
objness
=
np
.
where
(
ious_max
>
ignore_thresh
,
-
np
.
ones_like
(
objness
),
...
...
@@ -145,17 +148,17 @@ def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
2
],
tw
)
*
scale
loss
[
i
]
+=
l1loss
(
x
[
i
,
an_idx
,
gj
,
gi
,
3
],
th
)
*
scale
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
1
objness
[
i
,
an_idx
*
h
*
w
+
gj
*
w
+
gi
]
=
gtscore
[
i
,
j
]
for
label_idx
in
range
(
class_num
):
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
i
nt
(
label_idx
==
gtlabel
[
i
,
j
])
*
gtscore
[
i
,
j
]
)
loss
[
i
]
+=
sce
(
x
[
i
,
an_idx
,
gj
,
gi
,
5
+
label_idx
],
label_pos
i
f
label_idx
==
gtlabel
[
i
,
j
]
else
label_neg
)
for
j
in
range
(
mask_num
*
h
*
w
):
if
objness
[
i
,
j
]
>=
0
:
loss
[
i
]
+=
sce
(
pred_obj
[
i
,
j
],
objness
[
i
,
j
])
return
(
loss
,
objness
.
reshape
((
n
,
mask_num
,
h
,
w
)).
astype
(
'
in
t32'
),
\
return
(
loss
,
objness
.
reshape
((
n
,
mask_num
,
h
,
w
)).
astype
(
'
floa
t32'
),
\
gt_matches
.
astype
(
'int32'
))
...
...
@@ -220,9 +223,9 @@ class TestYolov3LossOp(OpTest):
self
.
use_label_smooth
=
True
class
TestYolov3LossWithLabelSmooth
(
TestYolov3LossOp
):
class
TestYolov3LossWith
out
LabelSmooth
(
TestYolov3LossOp
):
def
set_label_smooth
(
self
):
self
.
use_label_smooth
=
Tru
e
self
.
use_label_smooth
=
Fals
e
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录