test_transpose_op.py 24.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xzl 已提交
15
import unittest
16 17

import gradient_checker
X
xzl 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
20
from eager_op_test import OpTest, convert_float_to_uint16
21

22
import paddle
23 24
from paddle import fluid
from paddle.fluid import Program, core, program_guard
X
xzl 已提交
25

26
paddle.enable_static()
X
xzl 已提交
27

S
seemingwang 已提交
28

29
class TestTransposeOp(OpTest):
X
xzl 已提交
30
    def setUp(self):
31
        self.init_op_type()
32
        self.initTestCase()
H
hong 已提交
33
        self.python_api = paddle.transpose
34
        self.public_python_api = paddle.transpose
35
        self.prim_op_type = "prim"
36
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
37 38 39 40
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
41
        self.outputs = {
42
            'XShape': np.random.random(self.shape).astype("float64"),
43
            'Out': self.inputs['X'].transpose(self.axis),
44
        }
45

46 47 48 49
    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

50
    def test_check_output(self):
51
        self.check_output(no_check_set=['XShape'])
52 53

    def test_check_grad(self):
54
        self.check_grad(['X'], 'Out', check_prim=True)
55 56

    def initTestCase(self):
Z
zhupengyang 已提交
57
        self.shape = (3, 40)
58 59 60
        self.axis = (1, 0)


61 62
class TestCase0(TestTransposeOp):
    def initTestCase(self):
63 64
        self.shape = (100,)
        self.axis = (0,)
65 66


67 68
class TestCase1(TestTransposeOp):
    def initTestCase(self):
Z
zhupengyang 已提交
69
        self.shape = (3, 4, 10)
70 71 72 73 74 75 76 77
        self.axis = (0, 2, 1)


class TestCase2(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)

X
xzl 已提交
78

79 80 81 82
class TestCase3(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
X
xzl 已提交
83 84


85 86 87 88
class TestCase4(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
X
xzl 已提交
89 90


91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
class TestCase5(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 16, 96)
        self.axis = (0, 2, 1)


class TestCase6(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 12, 16)
        self.axis = (3, 1, 2, 0)


class TestCase7(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 10, 2, 16)
        self.axis = (0, 1, 3, 2)


109 110 111 112 113 114 115 116 117 118
class TestCase8(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6, 7)


class TestCase9(TestTransposeOp):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
119 120


121
class TestCase10(TestTransposeOp):
122 123 124 125
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.python_api = paddle.transpose
126
        self.public_python_api = paddle.transpose
127 128 129 130 131 132 133 134 135 136 137
        self.prim_op_type = "prim"
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("float64"),
            'Out': self.inputs['X'].transpose(self.axis),
        }

138 139 140 141 142
    def initTestCase(self):
        self.shape = (10, 8, 2)
        self.axis = (-1, 1, -3)


143
class TestCase_ZeroDim(TestTransposeOp):
144 145 146 147
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.python_api = paddle.transpose
148
        self.public_python_api = paddle.transpose
149 150 151 152 153 154 155 156 157 158 159 160
        self.prim_op_type = "prim"
        self.enable_cinn = False
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("float64"),
            'Out': self.inputs['X'].transpose(self.axis),
        }

161 162 163 164 165
    def initTestCase(self):
        self.shape = ()
        self.axis = ()


166 167 168 169 170
class TestAutoTuneTransposeOp(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.python_api = paddle.transpose
171
        self.public_python_api = paddle.transpose
172
        self.prim_op_type = "prim"
173 174 175 176 177 178 179
        self.inputs = {'X': np.random.random(self.shape).astype("float64")}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("float64"),
180
            'Out': self.inputs['X'].transpose(self.axis),
181 182 183 184 185 186 187 188 189 190 191 192 193 194
        }

    def initTestCase(self):
        fluid.core.set_autotune_range(0, 3)
        fluid.core.update_autotune_status()
        fluid.core.enable_autotune()
        self.shape = (1, 12, 256, 1)
        self.axis = (0, 3, 2, 1)

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
195
        self.check_output(no_check_set=['XShape'])
196 197 198
        fluid.core.disable_autotune()

    def test_check_grad(self):
199
        self.check_grad(['X'], 'Out', check_prim=True)
200 201


202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
class TestAutoTuneTransposeFP16Op(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.float16
        self.python_api = paddle.transpose
        self.public_python_api = paddle.transpose
        self.prim_op_type = "prim"
        self.inputs = {'X': np.random.random(self.shape).astype(self.dtype)}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype(self.dtype),
            'Out': self.inputs['X'].transpose(self.axis),
        }

    def initTestCase(self):
        fluid.core.set_autotune_range(0, 3)
        fluid.core.update_autotune_status()
        fluid.core.enable_autotune()
        self.shape = (1, 12, 256, 1)
        self.axis = (0, 3, 2, 1)

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])
        fluid.core.disable_autotune()

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', check_prim=True)


239 240 241 242 243 244
class TestAutoTuneTransposeBF16Op(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.uint16
        self.python_api = paddle.transpose
245
        self.public_python_api = paddle.transpose
246 247
        self.prim_op_type = "prim"
        self.enable_cinn = False
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
        x = np.random.random(self.shape).astype("float32")
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': convert_float_to_uint16(
                np.random.random(self.shape).astype("float32")
            ),
            'Out': self.inputs['X'].transpose(self.axis),
        }

    def initTestCase(self):
        fluid.core.set_autotune_range(0, 3)
        fluid.core.update_autotune_status()
        fluid.core.enable_autotune()
        self.shape = (2, 8, 10)
        self.axis = (0, 2, 1)

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])
        fluid.core.disable_autotune()

    def test_check_grad(self):
277
        self.check_grad(['X'], 'Out', check_prim=True)
278 279


280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
class TestTransposeFP16Op(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.float16
        self.prim_op_type = "prim"
        self.enable_cinn = False
        self.python_api = paddle.transpose
        self.public_python_api = paddle.transpose
        x = np.random.random(self.shape).astype(self.dtype)

        self.inputs = {'X': x}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            'XShape': np.random.random(self.shape).astype(self.dtype),
            'Out': self.inputs['X'].transpose(self.axis),
        }

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(['X'], 'Out', check_prim=True)

    def initTestCase(self):
        self.shape = (3, 40)
        self.axis = (1, 0)


316 317 318 319 320
class TestTransposeBF16Op(OpTest):
    def setUp(self):
        self.init_op_type()
        self.initTestCase()
        self.dtype = np.uint16
321 322
        self.prim_op_type = "prim"
        self.enable_cinn = False
323
        self.python_api = paddle.transpose
324
        self.public_python_api = paddle.transpose
325 326 327 328 329 330 331 332
        x = np.random.random(self.shape).astype("float32")

        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {
            'axis': list(self.axis),
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
333 334 335 336
            'XShape': convert_float_to_uint16(
                np.random.random(self.shape).astype("float32")
            ),
            'Out': self.inputs['X'].transpose(self.axis),
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
        }

    def init_op_type(self):
        self.op_type = "transpose2"
        self.use_mkldnn = False

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        pass

    def initTestCase(self):
        self.shape = (3, 2)
        self.axis = (1, 0)


354 355 356 357 358 359 360
class TestTransposeOpBool(TestTransposeOp):
    def test_check_grad(self):
        pass


class TestTransposeOpBool1D(TestTransposeOpBool):
    def initTestCase(self):
361 362
        self.shape = (100,)
        self.axis = (0,)
363 364 365
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
366
            'Out': self.inputs['X'].transpose(self.axis),
367 368 369 370 371 372 373 374 375 376
        }


class TestTransposeOpBool2D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (3, 40)
        self.axis = (1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
377
            'Out': self.inputs['X'].transpose(self.axis),
378 379 380 381 382 383 384 385 386 387
        }


class TestTransposeOpBool3D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (3, 4, 10)
        self.axis = (0, 2, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
388
            'Out': self.inputs['X'].transpose(self.axis),
389 390 391 392 393 394 395 396 397 398
        }


class TestTransposeOpBool4D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5)
        self.axis = (0, 2, 3, 1)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
399
            'Out': self.inputs['X'].transpose(self.axis),
400 401 402 403 404 405 406 407 408 409
        }


class TestTransposeOpBool5D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6)
        self.axis = (4, 2, 3, 1, 0)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
410
            'Out': self.inputs['X'].transpose(self.axis),
411 412 413 414 415 416 417 418 419 420
        }


class TestTransposeOpBool6D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 4, 5, 6, 1)
        self.axis = (4, 2, 3, 1, 0, 5)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
421
            'Out': self.inputs['X'].transpose(self.axis),
422 423 424 425 426 427 428 429 430 431
        }


class TestTransposeOpBool7D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3)
        self.axis = (0, 1, 3, 2, 4, 5, 6)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
432
            'Out': self.inputs['X'].transpose(self.axis),
433 434 435 436 437 438 439 440 441 442
        }


class TestTransposeOpBool8D(TestTransposeOpBool):
    def initTestCase(self):
        self.shape = (2, 3, 2, 3, 2, 4, 3, 3)
        self.axis = (6, 1, 3, 5, 0, 2, 4, 7)
        self.inputs = {'X': np.random.random(self.shape).astype("bool")}
        self.outputs = {
            'XShape': np.random.random(self.shape).astype("bool"),
443
            'Out': self.inputs['X'].transpose(self.axis),
444 445 446
        }


447
class TestTransposeOpError(unittest.TestCase):
448
    def test_errors(self):
449
        paddle.enable_static()
450
        with program_guard(Program(), Program()):
G
GGBond8488 已提交
451 452 453
            x = paddle.static.data(
                name='x', shape=[-1, 10, 5, 3], dtype='float64'
            )
454 455 456

            def test_x_Variable_check():
                # the Input(x)'s type must be Variable
457
                paddle.transpose("not_variable", perm=[1, 0, 2])
458 459 460 461

            self.assertRaises(TypeError, test_x_Variable_check)

            def test_x_dtype_check():
462
                # the Input(x)'s dtype must be one of [bool, float16, float32, float64, int32, int64]
G
GGBond8488 已提交
463 464
                x1 = paddle.static.data(
                    name='x1', shape=[-1, 10, 5, 3], dtype='int8'
465
                )
466
                paddle.transpose(x1, perm=[1, 0, 2])
467 468 469 470 471

            self.assertRaises(TypeError, test_x_dtype_check)

            def test_perm_list_check():
                # Input(perm)'s type must be list
472
                paddle.transpose(x, perm="[1, 0, 2]")
473 474 475 476 477 478

            self.assertRaises(TypeError, test_perm_list_check)

            def test_perm_length_and_x_dim_check():
                # Input(perm) is the permutation of dimensions of Input(input)
                # its length should be equal to dimensions of Input(input)
479
                paddle.transpose(x, perm=[1, 0, 2, 3, 4])
480 481 482 483 484

            self.assertRaises(ValueError, test_perm_length_and_x_dim_check)

            def test_each_elem_value_check():
                # Each element in Input(perm) should be less than Input(x)'s dimension
485
                paddle.transpose(x, perm=[3, 5, 7])
486 487 488

            self.assertRaises(ValueError, test_each_elem_value_check)

S
seemingwang 已提交
489

490 491 492 493 494 495 496 497 498 499
class TestTransposeApi(unittest.TestCase):
    def test_static_out(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.static.data(name='x', shape=[2, 3, 4], dtype='float32')
            x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
            x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            x_np = np.random.random([2, 3, 4]).astype("float32")
500 501 502
            result1, result2 = exe.run(
                feed={"x": x_np}, fetch_list=[x_trans1, x_trans2]
            )
503 504
            expected_result1 = np.transpose(x_np, [1, 0, 2])
            expected_result2 = np.transpose(x_np, (2, 1, 0))
S
seemingwang 已提交
505

506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
            np.testing.assert_array_equal(result1, expected_result1)
            np.testing.assert_array_equal(result2, expected_result2)

    def test_dygraph_out(self):
        # This is an old test before 2.0 API so we need to disable static
        # to trigger dygraph
        paddle.disable_static()
        x = paddle.randn([2, 3, 4])
        x_trans1 = paddle.transpose(x, perm=[1, 0, 2])
        x_trans2 = paddle.transpose(x, perm=(2, 1, 0))
        x_np = x.numpy()
        expected_result1 = np.transpose(x_np, [1, 0, 2])
        expected_result2 = np.transpose(x_np, (2, 1, 0))

        np.testing.assert_array_equal(x_trans1.numpy(), expected_result1)
        np.testing.assert_array_equal(x_trans2.numpy(), expected_result2)
        # This is an old test before 2.0 API so we enable static again after
        # dygraph test
        paddle.enable_static()
525

S
seemingwang 已提交
526

527 528 529
class TestTAPI(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
530
            data = paddle.static.data(shape=[10], dtype="float64", name="data")
531 532 533 534
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10]).astype("float64")
535
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
536 537 538 539
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
540 541 542
            data = paddle.static.data(
                shape=[10, 5], dtype="float64", name="data"
            )
543 544 545 546
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([10, 5]).astype("float64")
547
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
548 549 550 551
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.program_guard(fluid.Program()):
552 553 554
            data = paddle.static.data(
                shape=[1, 5], dtype="float64", name="data"
            )
555 556 557 558
            data_t = paddle.t(data)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            data_np = np.random.random([1, 5]).astype("float64")
559
            (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t])
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
            expected_result = np.transpose(data_np)
        self.assertEqual((result == expected_result).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([10, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard():
            np_x = np.random.random([1, 5]).astype("float64")
            data = fluid.dygraph.to_variable(np_x)
            z = paddle.t(data)
            np_z = z.numpy()
            z_expected = np.array(np.transpose(np_x))
        self.assertEqual((np_z == z_expected).all(), True)

    def test_errors(self):
        with fluid.program_guard(fluid.Program()):
589
            x = paddle.static.data(name='x', shape=[10, 5, 3], dtype='float64')
590 591 592 593 594 595 596

            def test_x_dimension_check():
                paddle.t(x)

            self.assertRaises(ValueError, test_x_dimension_check)


597 598 599 600 601 602 603 604 605 606 607 608
class TestMoveAxis(unittest.TestCase):
    def test_moveaxis1(self):
        x_np = np.random.randn(2, 3, 4, 5, 7)
        expected = np.moveaxis(x_np, [0, 4, 3, 2], [1, 3, 2, 0])
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 4, 5, 7], dtype='float64')
            out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

609
        np.testing.assert_array_equal(out_np, expected)
610 611 612 613 614

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0])
        self.assertEqual(out.shape, [4, 2, 5, 7, 3])
615
        np.testing.assert_array_equal(out.numpy(), expected)
616 617 618 619 620 621 622 623 624 625 626 627 628
        paddle.enable_static()

    def test_moveaxis2(self):
        x_np = np.random.randn(2, 3, 5)
        expected = np.moveaxis(x_np, -2, -1)
        paddle.enable_static()
        with paddle.static.program_guard(fluid.Program()):
            x = paddle.static.data("x", shape=[2, 3, 5], dtype='float64')
            out = x.moveaxis(-2, -1)

            exe = paddle.static.Executor()
            out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0]

629
        np.testing.assert_array_equal(out_np, expected)
630 631 632 633 634

        paddle.disable_static()
        x = paddle.to_tensor(x_np)
        out = x.moveaxis(-2, -1)
        self.assertEqual(out.shape, [2, 5, 3])
635
        np.testing.assert_array_equal(out.numpy(), expected)
636 637
        paddle.enable_static()

638 639
    def test_moveaxis3(self):
        paddle.disable_static()
640 641 642
        x = paddle.to_tensor(
            [[1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j]]
        )
643 644 645 646
        out = x.moveaxis(0, 1)
        self.assertEqual(out.shape, [2, 3])
        paddle.enable_static()

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    def test_error(self):
        x = paddle.randn([2, 3, 4, 5])
        # src must have the same number with dst
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [1, 0], [2])

        # each element of src must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [1, 1], [0, 2])

        # each element of dst must be unique
        with self.assertRaises(ValueError):
            paddle.moveaxis(x, [0, 1], [2, 2])

        # each element of src must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0.5], [1])

        # each element of dst must be integer
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [0], [1.5])

        # each element of src must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [-10, 1], [2, 3])

        # each element of dst must be in the range of [-4, 3)
        with self.assertRaises(AssertionError):
            paddle.moveaxis(x, [2, 1], [10, 3])


678 679 680 681 682 683 684 685 686 687
class TestTransposeDoubleGradCheck(unittest.TestCase):
    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
688
        data = paddle.static.data('data', [2, 3, 4], dtype)
689 690 691 692
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

693 694 695 696 697 698
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.transpose_wrapper, [data], out, x_init=[data_arr], place=place
        )
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestTransposeTripleGradCheck(unittest.TestCase):
    def transpose_wrapper(self, x):
        return paddle.transpose(x[0], [1, 0, 2])

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
719
        data = paddle.static.data('data', [2, 3, 4], dtype)
720 721 722 723
        data.persistable = True
        out = paddle.transpose(data, [1, 0, 2])
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

724 725 726 727 728 729
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.transpose_wrapper, [data], out, x_init=[data_arr], place=place
        )
730 731 732 733 734 735 736 737 738 739

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


740 741 742 743 744 745 746
class TestTransposeAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()

        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.transpose(x, [])
747 748
        if hasattr(out, 'retain_grads'):
            out.retain_grads()
749 750 751 752 753 754 755 756 757
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

        paddle.enable_static()


X
xzl 已提交
758
if __name__ == '__main__':
H
hong 已提交
759
    paddle.enable_static()
X
xzl 已提交
760
    unittest.main()