# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import gradient_checker import numpy as np from decorator_helper import prog_scope from eager_op_test import OpTest, convert_float_to_uint16 import paddle from paddle import fluid from paddle.fluid import Program, core, program_guard paddle.enable_static() class TestTransposeOp(OpTest): def setUp(self): self.init_op_type() self.initTestCase() self.python_api = paddle.transpose self.public_python_api = paddle.transpose self.prim_op_type = "prim" self.inputs = {'X': np.random.random(self.shape).astype("float64")} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': np.random.random(self.shape).astype("float64"), 'Out': self.inputs['X'].transpose(self.axis), } def init_op_type(self): self.op_type = "transpose2" self.use_mkldnn = False def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) def initTestCase(self): self.shape = (3, 40) self.axis = (1, 0) class TestCase0(TestTransposeOp): def initTestCase(self): self.shape = (100,) self.axis = (0,) class TestCase1(TestTransposeOp): def initTestCase(self): self.shape = (3, 4, 10) self.axis = (0, 2, 1) class TestCase2(TestTransposeOp): def initTestCase(self): self.shape = (2, 3, 4, 5) self.axis = (0, 2, 3, 1) class TestCase3(TestTransposeOp): def initTestCase(self): self.shape = (2, 3, 4, 5, 6) self.axis = (4, 2, 3, 1, 0) class TestCase4(TestTransposeOp): def initTestCase(self): self.shape = (2, 3, 4, 5, 6, 1) self.axis = (4, 2, 3, 1, 0, 5) class TestCase5(TestTransposeOp): def initTestCase(self): self.shape = (2, 16, 96) self.axis = (0, 2, 1) class TestCase6(TestTransposeOp): def initTestCase(self): self.shape = (2, 10, 12, 16) self.axis = (3, 1, 2, 0) class TestCase7(TestTransposeOp): def initTestCase(self): self.shape = (2, 10, 2, 16) self.axis = (0, 1, 3, 2) class TestCase8(TestTransposeOp): def initTestCase(self): self.shape = (2, 3, 2, 3, 2, 4, 3, 3) self.axis = (0, 1, 3, 2, 4, 5, 6, 7) class TestCase9(TestTransposeOp): def initTestCase(self): self.shape = (2, 3, 2, 3, 2, 4, 3, 3) self.axis = (6, 1, 3, 5, 0, 2, 4, 7) class TestCase10(TestTransposeOp): def setUp(self): self.init_op_type() self.initTestCase() self.python_api = paddle.transpose self.public_python_api = paddle.transpose self.prim_op_type = "prim" self.inputs = {'X': np.random.random(self.shape).astype("float64")} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': np.random.random(self.shape).astype("float64"), 'Out': self.inputs['X'].transpose(self.axis), } def initTestCase(self): self.shape = (10, 8, 2) self.axis = (-1, 1, -3) class TestCase_ZeroDim(TestTransposeOp): def setUp(self): self.init_op_type() self.initTestCase() self.python_api = paddle.transpose self.public_python_api = paddle.transpose self.prim_op_type = "prim" self.enable_cinn = False self.inputs = {'X': np.random.random(self.shape).astype("float64")} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': np.random.random(self.shape).astype("float64"), 'Out': self.inputs['X'].transpose(self.axis), } def initTestCase(self): self.shape = () self.axis = () class TestAutoTuneTransposeOp(OpTest): def setUp(self): self.init_op_type() self.initTestCase() self.python_api = paddle.transpose self.public_python_api = paddle.transpose self.prim_op_type = "prim" self.inputs = {'X': np.random.random(self.shape).astype("float64")} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': np.random.random(self.shape).astype("float64"), 'Out': self.inputs['X'].transpose(self.axis), } def initTestCase(self): fluid.core.set_autotune_range(0, 3) fluid.core.update_autotune_status() fluid.core.enable_autotune() self.shape = (1, 12, 256, 1) self.axis = (0, 3, 2, 1) def init_op_type(self): self.op_type = "transpose2" self.use_mkldnn = False def test_check_output(self): self.check_output(no_check_set=['XShape']) fluid.core.disable_autotune() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestAutoTuneTransposeFP16Op(OpTest): def setUp(self): self.init_op_type() self.initTestCase() self.dtype = np.float16 self.python_api = paddle.transpose self.public_python_api = paddle.transpose self.prim_op_type = "prim" self.inputs = {'X': np.random.random(self.shape).astype(self.dtype)} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': np.random.random(self.shape).astype(self.dtype), 'Out': self.inputs['X'].transpose(self.axis), } def initTestCase(self): fluid.core.set_autotune_range(0, 3) fluid.core.update_autotune_status() fluid.core.enable_autotune() self.shape = (1, 12, 256, 1) self.axis = (0, 3, 2, 1) def init_op_type(self): self.op_type = "transpose2" self.use_mkldnn = False def test_check_output(self): self.check_output(no_check_set=['XShape']) fluid.core.disable_autotune() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestAutoTuneTransposeBF16Op(OpTest): def setUp(self): self.init_op_type() self.initTestCase() self.dtype = np.uint16 self.python_api = paddle.transpose self.public_python_api = paddle.transpose self.prim_op_type = "prim" self.enable_cinn = False x = np.random.random(self.shape).astype("float32") self.inputs = {'X': convert_float_to_uint16(x)} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': convert_float_to_uint16( np.random.random(self.shape).astype("float32") ), 'Out': self.inputs['X'].transpose(self.axis), } def initTestCase(self): fluid.core.set_autotune_range(0, 3) fluid.core.update_autotune_status() fluid.core.enable_autotune() self.shape = (2, 8, 10) self.axis = (0, 2, 1) def init_op_type(self): self.op_type = "transpose2" self.use_mkldnn = False def test_check_output(self): self.check_output(no_check_set=['XShape']) fluid.core.disable_autotune() def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) class TestTransposeFP16Op(OpTest): def setUp(self): self.init_op_type() self.initTestCase() self.dtype = np.float16 self.prim_op_type = "prim" self.enable_cinn = False self.python_api = paddle.transpose self.public_python_api = paddle.transpose x = np.random.random(self.shape).astype(self.dtype) self.inputs = {'X': x} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': np.random.random(self.shape).astype(self.dtype), 'Out': self.inputs['X'].transpose(self.axis), } def init_op_type(self): self.op_type = "transpose2" self.use_mkldnn = False def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(['X'], 'Out', check_prim=True) def initTestCase(self): self.shape = (3, 40) self.axis = (1, 0) class TestTransposeBF16Op(OpTest): def setUp(self): self.init_op_type() self.initTestCase() self.dtype = np.uint16 self.prim_op_type = "prim" self.enable_cinn = False self.python_api = paddle.transpose self.public_python_api = paddle.transpose x = np.random.random(self.shape).astype("float32") self.inputs = {'X': convert_float_to_uint16(x)} self.attrs = { 'axis': list(self.axis), 'use_mkldnn': self.use_mkldnn, } self.outputs = { 'XShape': convert_float_to_uint16( np.random.random(self.shape).astype("float32") ), 'Out': self.inputs['X'].transpose(self.axis), } def init_op_type(self): self.op_type = "transpose2" self.use_mkldnn = False def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): pass def initTestCase(self): self.shape = (3, 2) self.axis = (1, 0) class TestTransposeOpBool(TestTransposeOp): def test_check_grad(self): pass class TestTransposeOpBool1D(TestTransposeOpBool): def initTestCase(self): self.shape = (100,) self.axis = (0,) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpBool2D(TestTransposeOpBool): def initTestCase(self): self.shape = (3, 40) self.axis = (1, 0) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpBool3D(TestTransposeOpBool): def initTestCase(self): self.shape = (3, 4, 10) self.axis = (0, 2, 1) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpBool4D(TestTransposeOpBool): def initTestCase(self): self.shape = (2, 3, 4, 5) self.axis = (0, 2, 3, 1) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpBool5D(TestTransposeOpBool): def initTestCase(self): self.shape = (2, 3, 4, 5, 6) self.axis = (4, 2, 3, 1, 0) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpBool6D(TestTransposeOpBool): def initTestCase(self): self.shape = (2, 3, 4, 5, 6, 1) self.axis = (4, 2, 3, 1, 0, 5) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpBool7D(TestTransposeOpBool): def initTestCase(self): self.shape = (2, 3, 2, 3, 2, 4, 3) self.axis = (0, 1, 3, 2, 4, 5, 6) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpBool8D(TestTransposeOpBool): def initTestCase(self): self.shape = (2, 3, 2, 3, 2, 4, 3, 3) self.axis = (6, 1, 3, 5, 0, 2, 4, 7) self.inputs = {'X': np.random.random(self.shape).astype("bool")} self.outputs = { 'XShape': np.random.random(self.shape).astype("bool"), 'Out': self.inputs['X'].transpose(self.axis), } class TestTransposeOpError(unittest.TestCase): def test_errors(self): paddle.enable_static() with program_guard(Program(), Program()): x = paddle.static.data( name='x', shape=[-1, 10, 5, 3], dtype='float64' ) def test_x_Variable_check(): # the Input(x)'s type must be Variable paddle.transpose("not_variable", perm=[1, 0, 2]) self.assertRaises(TypeError, test_x_Variable_check) def test_x_dtype_check(): # the Input(x)'s dtype must be one of [bool, float16, float32, float64, int32, int64] x1 = paddle.static.data( name='x1', shape=[-1, 10, 5, 3], dtype='int8' ) paddle.transpose(x1, perm=[1, 0, 2]) self.assertRaises(TypeError, test_x_dtype_check) def test_perm_list_check(): # Input(perm)'s type must be list paddle.transpose(x, perm="[1, 0, 2]") self.assertRaises(TypeError, test_perm_list_check) def test_perm_length_and_x_dim_check(): # Input(perm) is the permutation of dimensions of Input(input) # its length should be equal to dimensions of Input(input) paddle.transpose(x, perm=[1, 0, 2, 3, 4]) self.assertRaises(ValueError, test_perm_length_and_x_dim_check) def test_each_elem_value_check(): # Each element in Input(perm) should be less than Input(x)'s dimension paddle.transpose(x, perm=[3, 5, 7]) self.assertRaises(ValueError, test_each_elem_value_check) class TestTransposeApi(unittest.TestCase): def test_static_out(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program()): x = paddle.static.data(name='x', shape=[2, 3, 4], dtype='float32') x_trans1 = paddle.transpose(x, perm=[1, 0, 2]) x_trans2 = paddle.transpose(x, perm=(2, 1, 0)) place = paddle.CPUPlace() exe = paddle.static.Executor(place) x_np = np.random.random([2, 3, 4]).astype("float32") result1, result2 = exe.run( feed={"x": x_np}, fetch_list=[x_trans1, x_trans2] ) expected_result1 = np.transpose(x_np, [1, 0, 2]) expected_result2 = np.transpose(x_np, (2, 1, 0)) np.testing.assert_array_equal(result1, expected_result1) np.testing.assert_array_equal(result2, expected_result2) def test_dygraph_out(self): # This is an old test before 2.0 API so we need to disable static # to trigger dygraph paddle.disable_static() x = paddle.randn([2, 3, 4]) x_trans1 = paddle.transpose(x, perm=[1, 0, 2]) x_trans2 = paddle.transpose(x, perm=(2, 1, 0)) x_np = x.numpy() expected_result1 = np.transpose(x_np, [1, 0, 2]) expected_result2 = np.transpose(x_np, (2, 1, 0)) np.testing.assert_array_equal(x_trans1.numpy(), expected_result1) np.testing.assert_array_equal(x_trans2.numpy(), expected_result2) # This is an old test before 2.0 API so we enable static again after # dygraph test paddle.enable_static() class TestTAPI(unittest.TestCase): def test_out(self): with fluid.program_guard(fluid.Program()): data = paddle.static.data(shape=[10], dtype="float64", name="data") data_t = paddle.t(data) place = fluid.CPUPlace() exe = fluid.Executor(place) data_np = np.random.random([10]).astype("float64") (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t]) expected_result = np.transpose(data_np) self.assertEqual((result == expected_result).all(), True) with fluid.program_guard(fluid.Program()): data = paddle.static.data( shape=[10, 5], dtype="float64", name="data" ) data_t = paddle.t(data) place = fluid.CPUPlace() exe = fluid.Executor(place) data_np = np.random.random([10, 5]).astype("float64") (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t]) expected_result = np.transpose(data_np) self.assertEqual((result == expected_result).all(), True) with fluid.program_guard(fluid.Program()): data = paddle.static.data( shape=[1, 5], dtype="float64", name="data" ) data_t = paddle.t(data) place = fluid.CPUPlace() exe = fluid.Executor(place) data_np = np.random.random([1, 5]).astype("float64") (result,) = exe.run(feed={"data": data_np}, fetch_list=[data_t]) expected_result = np.transpose(data_np) self.assertEqual((result == expected_result).all(), True) with fluid.dygraph.guard(): np_x = np.random.random([10]).astype("float64") data = fluid.dygraph.to_variable(np_x) z = paddle.t(data) np_z = z.numpy() z_expected = np.array(np.transpose(np_x)) self.assertEqual((np_z == z_expected).all(), True) with fluid.dygraph.guard(): np_x = np.random.random([10, 5]).astype("float64") data = fluid.dygraph.to_variable(np_x) z = paddle.t(data) np_z = z.numpy() z_expected = np.array(np.transpose(np_x)) self.assertEqual((np_z == z_expected).all(), True) with fluid.dygraph.guard(): np_x = np.random.random([1, 5]).astype("float64") data = fluid.dygraph.to_variable(np_x) z = paddle.t(data) np_z = z.numpy() z_expected = np.array(np.transpose(np_x)) self.assertEqual((np_z == z_expected).all(), True) def test_errors(self): with fluid.program_guard(fluid.Program()): x = paddle.static.data(name='x', shape=[10, 5, 3], dtype='float64') def test_x_dimension_check(): paddle.t(x) self.assertRaises(ValueError, test_x_dimension_check) class TestMoveAxis(unittest.TestCase): def test_moveaxis1(self): x_np = np.random.randn(2, 3, 4, 5, 7) expected = np.moveaxis(x_np, [0, 4, 3, 2], [1, 3, 2, 0]) paddle.enable_static() with paddle.static.program_guard(fluid.Program()): x = paddle.static.data("x", shape=[2, 3, 4, 5, 7], dtype='float64') out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0]) exe = paddle.static.Executor() out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0] np.testing.assert_array_equal(out_np, expected) paddle.disable_static() x = paddle.to_tensor(x_np) out = paddle.moveaxis(x, [0, 4, 3, 2], [1, 3, 2, 0]) self.assertEqual(out.shape, [4, 2, 5, 7, 3]) np.testing.assert_array_equal(out.numpy(), expected) paddle.enable_static() def test_moveaxis2(self): x_np = np.random.randn(2, 3, 5) expected = np.moveaxis(x_np, -2, -1) paddle.enable_static() with paddle.static.program_guard(fluid.Program()): x = paddle.static.data("x", shape=[2, 3, 5], dtype='float64') out = x.moveaxis(-2, -1) exe = paddle.static.Executor() out_np = exe.run(feed={"x": x_np}, fetch_list=[out])[0] np.testing.assert_array_equal(out_np, expected) paddle.disable_static() x = paddle.to_tensor(x_np) out = x.moveaxis(-2, -1) self.assertEqual(out.shape, [2, 5, 3]) np.testing.assert_array_equal(out.numpy(), expected) paddle.enable_static() def test_moveaxis3(self): paddle.disable_static() x = paddle.to_tensor( [[1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j], [1 + 1j, -1 - 1j]] ) out = x.moveaxis(0, 1) self.assertEqual(out.shape, [2, 3]) paddle.enable_static() def test_error(self): x = paddle.randn([2, 3, 4, 5]) # src must have the same number with dst with self.assertRaises(AssertionError): paddle.moveaxis(x, [1, 0], [2]) # each element of src must be unique with self.assertRaises(ValueError): paddle.moveaxis(x, [1, 1], [0, 2]) # each element of dst must be unique with self.assertRaises(ValueError): paddle.moveaxis(x, [0, 1], [2, 2]) # each element of src must be integer with self.assertRaises(AssertionError): paddle.moveaxis(x, [0.5], [1]) # each element of dst must be integer with self.assertRaises(AssertionError): paddle.moveaxis(x, [0], [1.5]) # each element of src must be in the range of [-4, 3) with self.assertRaises(AssertionError): paddle.moveaxis(x, [-10, 1], [2, 3]) # each element of dst must be in the range of [-4, 3) with self.assertRaises(AssertionError): paddle.moveaxis(x, [2, 1], [10, 3]) class TestTransposeDoubleGradCheck(unittest.TestCase): def transpose_wrapper(self, x): return paddle.transpose(x[0], [1, 0, 2]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [2, 3, 4], dtype) data.persistable = True out = paddle.transpose(data, [1, 0, 2]) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.double_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.double_grad_check_for_dygraph( self.transpose_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestTransposeTripleGradCheck(unittest.TestCase): def transpose_wrapper(self, x): return paddle.transpose(x[0], [1, 0, 2]) @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. eps = 0.005 dtype = np.float32 data = paddle.static.data('data', [2, 3, 4], dtype) data.persistable = True out = paddle.transpose(data, [1, 0, 2]) data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype) gradient_checker.triple_grad_check( [data], out, x_init=[data_arr], place=place, eps=eps ) gradient_checker.triple_grad_check_for_dygraph( self.transpose_wrapper, [data], out, x_init=[data_arr], place=place ) def test_grad(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestTransposeAPI_ZeroDim(unittest.TestCase): def test_dygraph(self): paddle.disable_static() x = paddle.rand([]) x.stop_gradient = False out = paddle.transpose(x, []) if hasattr(out, 'retain_grads'): out.retain_grads() out.backward() self.assertEqual(out.shape, []) self.assertEqual(x.grad.shape, []) self.assertEqual(out.grad.shape, []) paddle.enable_static() if __name__ == '__main__': paddle.enable_static() unittest.main()