decorator.py 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from threading import Thread
Q
Qiao Longfei 已提交
16 17
import multiprocessing
import sys
18
import warnings
19
import logging
T
tangwei12 已提交
20

21 22 23
from queue import Queue
from itertools import zip_longest

24 25
import itertools
import random
26 27

from paddle.fluid.reader import QUEUE_GET_TIMEOUT
28

29 30
__all__ = []

31
# On macOS, the 'spawn' start method is now the default in Python3.8 multiprocessing,
32
# Paddle is currently unable to solve this, so forces the process to start using
33 34
# the 'fork' start method.
#
35
# TODO: This solution is not good, because the fork start method could lead to
36 37 38 39 40
# crashes of the subprocess. Figure out how to make 'spawn' work.
#
# For more details, please refer to
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# https://bugs.python.org/issue33725
41
if sys.version_info >= (3, 8) and sys.platform == 'darwin':
42 43 44 45
    fork_context = multiprocessing.get_context('fork')
else:
    fork_context = multiprocessing

46

S
sneaxiy 已提交
47 48
def cache(reader):
    """
49
    Cache the reader data into memory.
S
sneaxiy 已提交
50

51 52 53
    Be careful that this method may take long time to process,
    and consume lots of memory. :code:`reader()` would only
    call once.
S
sneaxiy 已提交
54 55

    Args:
56
        reader (generator): a reader object which yields
S
sneaxiy 已提交
57 58 59
            data each time.

    Returns:
S
sneaxiy 已提交
60
        generator: a decorated reader object which yields data from cached memory.
61

62 63 64 65
    Examples:
        .. code-block:: python

            import paddle
66

67 68 69
            def reader():
                for i in range(3):
                    yield i
70

71 72
            # All data is cached into memory
            cached_reader = paddle.io.cache(reader)
73

74 75 76
            # Output: 0 1 2
            for i in cached_reader():
                print(i)
S
sneaxiy 已提交
77 78 79 80 81 82 83 84 85 86
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
87 88 89
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
90
    output of each data reader as arguments.
H
Helin Wang 已提交
91

92 93 94 95 96 97
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
98
        func: a function to read data and compute result, the output of this function
99 100
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
101

102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
117 118 119 120 121 122
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
123
        for e in map(func, *rs):
H
Helin Wang 已提交
124 125 126 127 128
            yield e

    return reader


H
Helin Wang 已提交
129
def shuffle(reader, buf_size):
130
    """
131 132
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
133

134
    This API creates a decorated reader that outputs the shuffled data.
135

136
    The output data from the origin reader will be saved into a buffer,
137
    and then shuffle the data. The size of buffer is determined by argument buf_size.
138

139 140 141
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
158 159
    """

H
Helin Wang 已提交
160
    def data_reader():
161
        buf = []
H
Helin Wang 已提交
162
        for e in reader():
163 164 165 166 167 168 169 170 171 172 173 174
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
175
    return data_reader
176 177


H
Helin Wang 已提交
178
def chain(*readers):
179
    """
180
    Use the input data readers to create a chained data reader. The new created reader
181 182
    chains the outputs of input readers together as its output, and it do not change
    the format of the outputs.
183

184 185 186 187 188 189 190 191
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
192
    The chained reader will output:
193
    [0, 0, 0], [10, 10, 10], [20, 20, 20].
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
225 226 227

    """

H
Helin Wang 已提交
228
    def reader():
229
        rs = []
H
Helin Wang 已提交
230
        for r in readers:
231 232 233 234 235
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
236
    return reader
237 238


H
Helin Wang 已提交
239
class ComposeNotAligned(ValueError):
240 241 242
    pass


H
Helin Wang 已提交
243
def compose(*readers, **kwargs):
244 245
    """
    Creates a data reader whose output is the combination of input readers.
246

H
Helin Wang 已提交
247
    If input readers output following data entries:
248
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
249
    The composed reader will output:
250 251
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
252
    Args:
253
        readers (Reader|list of Reader): readers that will be composed together.
H
huzhiqiang 已提交
254 255 256 257 258
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

259
    Returns:
H
huzhiqiang 已提交
260 261 262 263
        the new data reader (Reader).

    Examples:
        .. code-block:: python
264

H
huzhiqiang 已提交
265 266 267 268 269 270 271
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
272 273 274 275 276 277 278
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
279
            return (x,)
280

H
Helin Wang 已提交
281
    def reader():
282
        rs = []
H
Helin Wang 已提交
283
        for r in readers:
284 285
            rs.append(r())
        if not check_alignment:
286 287
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
288
        else:
289
            for outputs in zip_longest(*rs):
290 291 292
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
293
                        raise ComposeNotAligned(
294 295
                            "outputs of readers are not aligned."
                        )
296
                yield sum(list(map(make_tuple, outputs)), ())
297

H
Helin Wang 已提交
298
    return reader
299 300


H
Helin Wang 已提交
301
def buffered(reader, size):
302 303
    """
    Creates a buffered data reader.
304

H
Helin Wang 已提交
305 306
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
307
    as the buffer is not empty.
308

309 310 311 312 313 314
    Args:
        reader(generator): the data reader to read from.
        size(int): max buffer size.

    Returns:
        generator: the buffered data reader.
315

316 317
    Examples:
        .. code-block:: python
318

319
            import paddle
320

321 322 323
            def reader():
                for i in range(3):
                    yield i
324

325 326
            # Create a buffered reader, and the buffer size is 2.
            buffered_reader = paddle.io.buffered(reader, 2)
327

328 329 330
            # Output: 0 1 2
            for i in buffered_reader():
                print(i)
331 332
    """

333
    class EndSignal:
334 335 336 337 338 339 340 341 342
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
343 344
    def data_reader():
        r = reader()
345
        q = Queue(maxsize=size)
346 347 348 349 350 351 352
        t = Thread(
            target=read_worker,
            args=(
                r,
                q,
            ),
        )
353 354 355 356 357 358 359
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
360
    return data_reader
Y
Yu Yang 已提交
361 362


Y
Yu Yang 已提交
363
def firstn(reader, n):
Y
Yu Yang 已提交
364
    """
365 366
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
367 368

    This API creates a decorated reader, and limits the max number of
369
    samples that reader could return.
Y
Yu Yang 已提交
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
389
            # the outputs are: 0 1 2 3 4
Y
Yu Yang 已提交
390 391
    """

Y
Yu Yang 已提交
392 393 394 395
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
396
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
397
            if i == n:
Y
Yu Yang 已提交
398 399 400
                break
            yield item

Y
Yu Yang 已提交
401
    return firstn_reader
402 403


404
class XmapEndSignal:
405 406 407
    pass


408
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
409
    """
Z
Zeng Jinle 已提交
410 411 412 413
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
414
        reader (callable): a data reader which yields the data.
Z
Zeng Jinle 已提交
415
        process_num (int): thread number to handle original sample.
416 417
        buffer_size (int): size of the queue to read data in.
        order (bool): whether to keep the data order from original reader.
Z
Zeng Jinle 已提交
418 419 420
            Default False.

    Returns:
421
        callable: a decorated reader with data mapping.
422 423
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
424

425 426 427 428 429
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
430

431 432 433 434
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
435 436
            in_queue.put((in_order, i))
            in_order += 1
437
        in_queue.put(end)
438 439 440 441 442 443 444 445 446 447 448

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
449

450 451 452 453 454 455 456 457 458 459
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
460
            out_order[0] += 1
461 462 463
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
464 465

    def xreader():
466 467
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
468 469 470 471 472 473 474 475
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
476 477 478 479 480
        args = (
            (in_queue, out_queue, mapper, out_order)
            if order
            else (in_queue, out_queue, mapper)
        )
481
        workers = []
482
        for i in range(process_num):
483 484 485 486 487 488
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

489 490 491 492 493 494 495 496 497 498 499 500 501
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
502 503


Q
Qiao Longfei 已提交
504 505
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
506
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
507 508 509
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge
    these data. A separate process will be created for each reader in the
    ``readers`` list, please guarantee every reader can work independently
510 511
    to avoid conflicts in parallel environment.

512 513

    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not supported
514
    in some platforms.
Q
Qiao Longfei 已提交
515

516
    Parameters:
517
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list
518 519 520 521 522 523
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
524

525 526
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
527

528 529

    Example:
Q
Qiao Longfei 已提交
530 531 532

    .. code-block:: python

533 534 535
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
536

537
        sample_files = ['sample_file_1', 'sample_file_2']
538

539 540 541 542 543
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
544 545


546 547 548 549 550 551 552
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
553

554 555 556
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
557

558 559 560
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
561
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2])
562 563
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
564

565
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
566

567 568
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
569

570
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
571

572 573
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
574

575 576 577 578 579 580 581 582 583
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
584 585
    """

586 587
    if sys.platform == 'win32':
        raise NotImplementedError(
588 589
            "The multiprocess_reader method is not supported on windows."
        )
590

591
    # ujson is ultra fast json encoder and decoder written in pure C with bindings for Python 3.6+.
Q
Qiao Longfei 已提交
592 593 594
    try:
        import ujson as json
    except Exception as e:
595 596
        warnings.warn(
            "The `ujson` module is not found, use the `json` module, `ujson` encodes and decodes faster, "
597 598
            "you can install `ujson` through `pip install ujson`."
        )
Q
Qiao Longfei 已提交
599 600
        import json

601 602 603
    assert (
        isinstance(readers, (list, tuple)) and len(readers) > 0
    ), "`readers` must be list or tuple."
Q
Qiao Longfei 已提交
604 605

    def _read_into_queue(reader, queue):
606 607 608 609 610 611
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
612
        except Exception as e:
613
            queue.put("")
614
            raise e
Q
Qiao Longfei 已提交
615 616

    def queue_reader():
617
        queue = fork_context.Queue(queue_size)
Q
Qiao Longfei 已提交
618
        for reader in readers:
619 620 621
            p = fork_context.Process(
                target=_read_into_queue, args=(reader, queue)
            )
Q
Qiao Longfei 已提交
622 623 624 625 626
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
627 628
            try:
                sample = queue.get(timeout=QUEUE_GET_TIMEOUT)
629
            except Exception as e:
630 631 632
                logging.error(
                    "multiprocess_reader failed to get data from the multiprocessing.Queue."
                )
633
                raise e
634

Q
Qiao Longfei 已提交
635 636
            if sample is None:
                finish_num += 1
637
            elif sample == "":
638 639 640
                raise ValueError(
                    "multiprocess_reader failed to put data into the multiprocessing.Queue."
                )
Q
Qiao Longfei 已提交
641 642 643 644
            else:
                yield sample

    def _read_into_pipe(reader, conn):
645 646 647 648 649 650 651
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
652
        except Exception as e:
653 654
            conn.send(json.dumps(""))
            conn.close()
655
            raise e
Q
Qiao Longfei 已提交
656 657 658 659

    def pipe_reader():
        conns = []
        for reader in readers:
660
            parent_conn, child_conn = fork_context.Pipe()
Q
Qiao Longfei 已提交
661
            conns.append(parent_conn)
662 663 664
            p = fork_context.Process(
                target=_read_into_pipe, args=(reader, child_conn)
            )
Q
Qiao Longfei 已提交
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
680 681 682
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
683 684 685
                    raise ValueError(
                        "multiprocess_reader failed to send data into the multiprocessing.Pipe."
                    )
Q
Qiao Longfei 已提交
686 687 688 689 690 691 692
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader