decorator.py 14.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
Helin Wang 已提交
15
__all__ = [
S
sneaxiy 已提交
16
    'cache', 'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
17
    'ComposeNotAligned', 'firstn', 'xmap_readers', 'multiprocess_reader'
H
Helin Wang 已提交
18
]
19

T
tangwei12 已提交
20 21
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
22
import multiprocessing
23
import six
Q
Qiao Longfei 已提交
24
import sys
T
tangwei12 已提交
25

26
from six.moves.queue import Queue
27
from six.moves import zip_longest
28 29
from six.moves import map
from six.moves import zip
30 31
import itertools
import random
T
tangwei12 已提交
32
import zlib
M
minqiyang 已提交
33
import paddle.compat as cpt
34 35


S
sneaxiy 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
49
        generator: a decorated reader object which yields data from cached memory.
S
sneaxiy 已提交
50 51 52 53 54 55 56 57 58 59
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
60 61 62
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
63
    output of each data reader as arguments.
H
Helin Wang 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
        func: a function to read data and compute result, the output of this function 
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
 
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
90 91 92 93 94 95
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
96
        for e in map(func, *rs):
H
Helin Wang 已提交
97 98 99 100 101
            yield e

    return reader


H
Helin Wang 已提交
102
def shuffle(reader, buf_size):
103
    """
Y
Yu Yang 已提交
104
    Creates a data reader whose data output is shuffled.
105

H
Helin Wang 已提交
106
    Output from the iterator that created by original reader will be
107 108 109
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

110
    :param reader: the original reader whose output will be shuffled.
Y
Yu Yang 已提交
111
    :type reader: callable
112
    :param buf_size: shuffle buffer size.
Y
Yu Yang 已提交
113
    :type buf_size: int
114

Y
Yu Yang 已提交
115 116
    :return: the new reader whose output is shuffled.
    :rtype: callable
117 118
    """

H
Helin Wang 已提交
119
    def data_reader():
120
        buf = []
H
Helin Wang 已提交
121
        for e in reader():
122 123 124 125 126 127 128 129 130 131 132 133
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
134
    return data_reader
135 136


H
Helin Wang 已提交
137
def chain(*readers):
138
    """
139 140
    Use the input data readers to create a chained data reader. The new created reader
    chains the outputs of input readers together as its output.
141

142 143 144 145 146 147 148 149
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
150
    The chained reader will output:
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    [[0, 0, 0], [10, 10, 10], [20, 20, 20]].

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
183 184 185

    """

H
Helin Wang 已提交
186
    def reader():
187
        rs = []
H
Helin Wang 已提交
188
        for r in readers:
189 190 191 192 193
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
194
    return reader
195 196


H
Helin Wang 已提交
197
class ComposeNotAligned(ValueError):
198 199 200
    pass


H
Helin Wang 已提交
201
def compose(*readers, **kwargs):
202 203
    """
    Creates a data reader whose output is the combination of input readers.
204

H
Helin Wang 已提交
205
    If input readers output following data entries:
206
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
207
    The composed reader will output:
208 209
    (1, 2, 3, 4, 5)

Y
Yu Yang 已提交
210 211
    :param readers: readers that will be composed together.
    :param check_alignment: if True, will check if input readers are aligned
212 213
        correctly. If False, will not check alignment and trailing outputs
        will be discarded. Defaults to True.
Y
Yu Yang 已提交
214
    :type check_alignment: bool
215

Y
Yu Yang 已提交
216
    :return: the new data reader.
217

218 219
    :raises ComposeNotAligned: outputs of readers are not aligned.
        Will not raise when check_alignment is set to False.
220 221 222 223 224 225 226 227 228
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
229
    def reader():
230
        rs = []
H
Helin Wang 已提交
231
        for r in readers:
232 233
            rs.append(r())
        if not check_alignment:
234 235
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
236
        else:
237
            for outputs in zip_longest(*rs):
238 239 240
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
241 242
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
243
                yield sum(list(map(make_tuple, outputs)), ())
244

H
Helin Wang 已提交
245
    return reader
246 247


H
Helin Wang 已提交
248
def buffered(reader, size):
249 250
    """
    Creates a buffered data reader.
251

H
Helin Wang 已提交
252 253
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
254
    as the buffer is not empty.
255

256
    :param reader: the data reader to read from.
Y
Yu Yang 已提交
257
    :type reader: callable
258
    :param size: max buffer size.
Y
Yu Yang 已提交
259
    :type size: int
260

261
    :returns: the buffered data reader.
262 263 264 265 266 267 268 269 270 271 272 273
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
274 275
    def data_reader():
        r = reader()
276
        q = Queue(maxsize=size)
277 278 279 280 281 282 283 284 285 286 287
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
288
    return data_reader
Y
Yu Yang 已提交
289 290


Y
Yu Yang 已提交
291
def firstn(reader, n):
Y
Yu Yang 已提交
292 293
    """
    Limit the max number of samples that reader could return.
Y
Yu Yang 已提交
294 295 296 297 298 299 300

    :param reader: the data reader to read from.
    :type reader: callable
    :param n: the max number of samples that return.
    :type n: int
    :return: the decorated reader.
    :rtype: callable
Y
Yu Yang 已提交
301 302
    """

Y
Yu Yang 已提交
303 304 305 306
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
307
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
308
            if i == n:
Y
Yu Yang 已提交
309 310 311
                break
            yield item

Y
Yu Yang 已提交
312
    return firstn_reader
313 314 315 316 317 318


class XmapEndSignal():
    pass


319
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
320
    """
Z
Zeng Jinle 已提交
321 322 323 324 325 326 327 328 329 330 331 332
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
        reader (callable): a data reader which yields the data. 
        process_num (int): thread number to handle original sample.
        buffer_size (int): size of the queue to read data in. 
        order (bool): whether to keep the data order from original reader. 
            Default False.

    Returns:
        callable: a decorated reader with data mapping. 
333 334
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
335

336 337 338 339 340
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
341

342 343 344 345
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
346 347
            in_queue.put((in_order, i))
            in_order += 1
348
        in_queue.put(end)
349 350 351 352 353 354 355 356 357 358 359

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
360

361 362 363 364 365 366 367 368 369 370
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
371
            out_order[0] += 1
372 373 374
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
375 376

    def xreader():
377 378
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
379 380 381 382 383 384 385 386 387 388 389
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
390
        for i in range(process_num):
391 392 393 394 395 396
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

397 398 399 400 401 402 403 404 405 406 407 408 409
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
410 411


Q
Qiao Longfei 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
    multiprocess_reader use python multi process to read data from readers
    and then use multiprocess.Queue or multiprocess.Pipe to merge all
    data. The process number is equal to the number of input readers, each
    process call one reader.

    Multiprocess.Queue require the rw access right to /dev/shm, some
    platform does not support.

    you need to create multiple readers first, these readers should be independent
    to each other so that each process can work independently.

    An example:

    .. code-block:: python

        reader0 = reader(["file01", "file02"])
        reader1 = reader(["file11", "file12"])
        reader1 = reader(["file21", "file22"])
        reader = multiprocess_reader([reader0, reader1, reader2],
            queue_size=100, use_pipe=False)
    """

    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
445 446 447 448 449 450 451 452 453
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467

    def queue_reader():
        queue = multiprocessing.Queue(queue_size)
        for reader in readers:
            p = multiprocessing.Process(
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
468 469
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
470 471 472 473
            else:
                yield sample

    def _read_into_pipe(reader, conn):
474 475 476 477 478 479 480 481 482 483 484
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

    def pipe_reader():
        conns = []
        for reader in readers:
            parent_conn, child_conn = multiprocessing.Pipe()
            conns.append(parent_conn)
            p = multiprocessing.Process(
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
508 509 510 511
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
512 513 514 515 516 517 518
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader