decorator.py 19.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15 16
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
17
import multiprocessing
18
import six
Q
Qiao Longfei 已提交
19
import sys
T
tangwei12 已提交
20

21
from six.moves.queue import Queue
22
from six.moves import zip_longest
23 24
from six.moves import map
from six.moves import zip
25 26
import itertools
import random
T
tangwei12 已提交
27
import zlib
M
minqiyang 已提交
28
import paddle.compat as cpt
29

30 31
__all__ = []

32 33 34 35 36 37 38 39 40 41
# On macOS, the 'spawn' start method is now the default in Python3.8 multiprocessing,
# Paddle is currently unable to solve this, so forces the process to start using 
# the 'fork' start method.
#
# TODO: This solution is not good, because the fork start method could lead to 
# crashes of the subprocess. Figure out how to make 'spawn' work.
#
# For more details, please refer to
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# https://bugs.python.org/issue33725
42
if sys.version_info >= (3, 8) and sys.platform == 'darwin':
43 44 45 46
    fork_context = multiprocessing.get_context('fork')
else:
    fork_context = multiprocessing

47

S
sneaxiy 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
61
        generator: a decorated reader object which yields data from cached memory.
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    
    Examples:
        .. code-block:: python

            import paddle
            
            def reader():
                for i in range(3):
                    yield i
            
            # All data is cached into memory
            cached_reader = paddle.io.cache(reader)
            
            # Output: 0 1 2
            for i in cached_reader():
                print(i)
S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
88 89 90
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
91
    output of each data reader as arguments.
H
Helin Wang 已提交
92

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
        func: a function to read data and compute result, the output of this function 
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
 
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
118 119 120 121 122 123
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
124
        for e in map(func, *rs):
H
Helin Wang 已提交
125 126 127 128 129
            yield e

    return reader


H
Helin Wang 已提交
130
def shuffle(reader, buf_size):
131
    """
132 133
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
134

135
    This API creates a decorated reader that outputs the shuffled data.
136

137 138 139 140 141 142
    The output data from the origin reader will be saved into a buffer, 
    and then shuffle the data. The size of buffer is determined by argument buf_size.
 
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
159 160
    """

H
Helin Wang 已提交
161
    def data_reader():
162
        buf = []
H
Helin Wang 已提交
163
        for e in reader():
164 165 166 167 168 169 170 171 172 173 174 175
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
176
    return data_reader
177 178


H
Helin Wang 已提交
179
def chain(*readers):
180
    """
181
    Use the input data readers to create a chained data reader. The new created reader
182 183
    chains the outputs of input readers together as its output, and it do not change
    the format of the outputs.
184

185 186 187 188 189 190 191 192
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
193
    The chained reader will output:
194
    [0, 0, 0], [10, 10, 10], [20, 20, 20].
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
226 227 228

    """

H
Helin Wang 已提交
229
    def reader():
230
        rs = []
H
Helin Wang 已提交
231
        for r in readers:
232 233 234 235 236
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
237
    return reader
238 239


H
Helin Wang 已提交
240
class ComposeNotAligned(ValueError):
241 242 243
    pass


H
Helin Wang 已提交
244
def compose(*readers, **kwargs):
245 246
    """
    Creates a data reader whose output is the combination of input readers.
247

H
Helin Wang 已提交
248
    If input readers output following data entries:
249
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
250
    The composed reader will output:
251 252
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    Args:
        readers (Reader|list of Reader): readers that will be composed together. 
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

    Returns: 
        the new data reader (Reader).

    Raises:
        ComposeNotAligned: outputs of readers are not aligned. This will not raise if check_alignment is set to False.
  
    Examples:
        .. code-block:: python
268

H
huzhiqiang 已提交
269 270 271 272 273 274 275
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
276 277 278 279 280 281 282 283 284
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
285
    def reader():
286
        rs = []
H
Helin Wang 已提交
287
        for r in readers:
288 289
            rs.append(r())
        if not check_alignment:
290 291
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
292
        else:
293
            for outputs in zip_longest(*rs):
294 295 296
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
297 298
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
299
                yield sum(list(map(make_tuple, outputs)), ())
300

H
Helin Wang 已提交
301
    return reader
302 303


H
Helin Wang 已提交
304
def buffered(reader, size):
305 306
    """
    Creates a buffered data reader.
307

H
Helin Wang 已提交
308 309
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
310
    as the buffer is not empty.
311

312 313 314 315 316 317 318 319 320
    Args:
        reader(generator): the data reader to read from.
        size(int): max buffer size.

    Returns:
        generator: the buffered data reader.
    
    Examples:
        .. code-block:: python
321

322 323 324 325 326 327 328 329 330 331 332 333
            import paddle
            
            def reader():
                for i in range(3):
                    yield i
            
            # Create a buffered reader, and the buffer size is 2.
            buffered_reader = paddle.io.buffered(reader, 2)
            
            # Output: 0 1 2
            for i in buffered_reader():
                print(i)
334 335 336 337 338 339 340 341 342 343 344 345
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
346 347
    def data_reader():
        r = reader()
348
        q = Queue(maxsize=size)
349 350 351 352 353 354 355 356 357 358 359
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
360
    return data_reader
Y
Yu Yang 已提交
361 362


Y
Yu Yang 已提交
363
def firstn(reader, n):
Y
Yu Yang 已提交
364
    """
365 366 367 368 369
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
    
    This API creates a decorated reader, and limits the max number of 
    samples that reader could return.
Y
Yu Yang 已提交
370

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
            # the outputs are: 0 1 2 3 4  
Y
Yu Yang 已提交
390 391
    """

Y
Yu Yang 已提交
392 393 394 395
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
396
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
397
            if i == n:
Y
Yu Yang 已提交
398 399 400
                break
            yield item

Y
Yu Yang 已提交
401
    return firstn_reader
402 403 404 405 406 407


class XmapEndSignal():
    pass


408
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
409
    """
Z
Zeng Jinle 已提交
410 411 412 413 414 415 416 417 418 419 420 421
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
        reader (callable): a data reader which yields the data. 
        process_num (int): thread number to handle original sample.
        buffer_size (int): size of the queue to read data in. 
        order (bool): whether to keep the data order from original reader. 
            Default False.

    Returns:
        callable: a decorated reader with data mapping. 
422 423
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
424

425 426 427 428 429
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
430

431 432 433 434
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
435 436
            in_queue.put((in_order, i))
            in_order += 1
437
        in_queue.put(end)
438 439 440 441 442 443 444 445 446 447 448

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
449

450 451 452 453 454 455 456 457 458 459
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
460
            out_order[0] += 1
461 462 463
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
464 465

    def xreader():
466 467
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
468 469 470 471 472 473 474 475 476 477 478
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
479
        for i in range(process_num):
480 481 482 483 484 485
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

486 487 488 489 490 491 492 493 494 495 496 497 498
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
499 500


Q
Qiao Longfei 已提交
501 502
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
503 504
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge 
T
tianshuo78520a 已提交
505
    these data. A separate process will be created for each reader in the 
506 507 508 509
    ``readers`` list, please guarantee every reader can work independently 
    to avoid conflicts in parallel environment.
    

T
tianshuo78520a 已提交
510
    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not supported 
511
    in some platforms.
Q
Qiao Longfei 已提交
512

513 514 515 516 517 518 519 520
    Parameters:
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list 
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
521

522 523
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
524

525 526

    Example:
Q
Qiao Longfei 已提交
527 528 529

    .. code-block:: python

530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
        
        sample_files = ['sample_file_1', 'sample_file_2']
        
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
        
        
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
        
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
            
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2]) 
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
            
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
            
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
            
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
            
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
            
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
581 582
    """

583 584 585 586
    if sys.platform == 'win32':
        raise NotImplementedError(
            "The multiprocess_reader method is not supported on windows.")

Q
Qiao Longfei 已提交
587 588 589 590 591 592
    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

593 594
    assert isinstance(readers, (list, tuple)) and len(readers) > 0, (
        "`readers` must be list or tuple.")
Q
Qiao Longfei 已提交
595 596

    def _read_into_queue(reader, queue):
597 598 599 600 601 602 603 604 605
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
606 607

    def queue_reader():
608
        queue = fork_context.Queue(queue_size)
Q
Qiao Longfei 已提交
609
        for reader in readers:
610
            p = fork_context.Process(
Q
Qiao Longfei 已提交
611 612 613 614 615 616 617 618 619
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
620 621
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
622 623 624 625
            else:
                yield sample

    def _read_into_pipe(reader, conn):
626 627 628 629 630 631 632 633 634 635 636
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
637 638 639 640

    def pipe_reader():
        conns = []
        for reader in readers:
641
            parent_conn, child_conn = fork_context.Pipe()
Q
Qiao Longfei 已提交
642
            conns.append(parent_conn)
643
            p = fork_context.Process(
Q
Qiao Longfei 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
660 661 662 663
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
664 665 666 667 668 669 670
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader