decorator.py 19.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
Helin Wang 已提交
15
__all__ = [
S
sneaxiy 已提交
16
    'cache', 'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
17
    'ComposeNotAligned', 'firstn', 'xmap_readers', 'multiprocess_reader'
H
Helin Wang 已提交
18
]
19

T
tangwei12 已提交
20 21
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
22
import multiprocessing
23
import six
Q
Qiao Longfei 已提交
24
import sys
T
tangwei12 已提交
25

26
from six.moves.queue import Queue
27
from six.moves import zip_longest
28 29
from six.moves import map
from six.moves import zip
30 31
import itertools
import random
T
tangwei12 已提交
32
import zlib
M
minqiyang 已提交
33
import paddle.compat as cpt
34

35 36 37 38 39 40 41 42 43 44
# On macOS, the 'spawn' start method is now the default in Python3.8 multiprocessing,
# Paddle is currently unable to solve this, so forces the process to start using 
# the 'fork' start method.
#
# TODO: This solution is not good, because the fork start method could lead to 
# crashes of the subprocess. Figure out how to make 'spawn' work.
#
# For more details, please refer to
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# https://bugs.python.org/issue33725
45
if sys.version_info >= (3, 8) and sys.platform == 'darwin':
46 47 48 49
    fork_context = multiprocessing.get_context('fork')
else:
    fork_context = multiprocessing

50

S
sneaxiy 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
64
        generator: a decorated reader object which yields data from cached memory.
S
sneaxiy 已提交
65 66 67 68 69 70 71 72 73 74
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
75 76 77
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
78
    output of each data reader as arguments.
H
Helin Wang 已提交
79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
        func: a function to read data and compute result, the output of this function 
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
 
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
105 106 107 108 109 110
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
111
        for e in map(func, *rs):
H
Helin Wang 已提交
112 113 114 115 116
            yield e

    return reader


H
Helin Wang 已提交
117
def shuffle(reader, buf_size):
118
    """
119 120
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
121

122
    This API creates a decorated reader that outputs the shuffled data.
123

124 125 126 127 128 129
    The output data from the origin reader will be saved into a buffer, 
    and then shuffle the data. The size of buffer is determined by argument buf_size.
 
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
130

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
146 147
    """

H
Helin Wang 已提交
148
    def data_reader():
149
        buf = []
H
Helin Wang 已提交
150
        for e in reader():
151 152 153 154 155 156 157 158 159 160 161 162
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
163
    return data_reader
164 165


H
Helin Wang 已提交
166
def chain(*readers):
167
    """
168
    Use the input data readers to create a chained data reader. The new created reader
169 170
    chains the outputs of input readers together as its output, and it do not change
    the format of the outputs.
171

172 173 174 175 176 177 178 179
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
180
    The chained reader will output:
181
    [0, 0, 0], [10, 10, 10], [20, 20, 20].
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
213 214 215

    """

H
Helin Wang 已提交
216
    def reader():
217
        rs = []
H
Helin Wang 已提交
218
        for r in readers:
219 220 221 222 223
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
224
    return reader
225 226


H
Helin Wang 已提交
227
class ComposeNotAligned(ValueError):
228 229 230
    pass


H
Helin Wang 已提交
231
def compose(*readers, **kwargs):
232 233
    """
    Creates a data reader whose output is the combination of input readers.
234

H
Helin Wang 已提交
235
    If input readers output following data entries:
236
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
237
    The composed reader will output:
238 239
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
    Args:
        readers (Reader|list of Reader): readers that will be composed together. 
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

    Returns: 
        the new data reader (Reader).

    Raises:
        ComposeNotAligned: outputs of readers are not aligned. This will not raise if check_alignment is set to False.
  
    Examples:
        .. code-block:: python
255

H
huzhiqiang 已提交
256 257 258 259 260 261 262
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
263 264 265 266 267 268 269 270 271
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
272
    def reader():
273
        rs = []
H
Helin Wang 已提交
274
        for r in readers:
275 276
            rs.append(r())
        if not check_alignment:
277 278
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
279
        else:
280
            for outputs in zip_longest(*rs):
281 282 283
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
284 285
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
286
                yield sum(list(map(make_tuple, outputs)), ())
287

H
Helin Wang 已提交
288
    return reader
289 290


H
Helin Wang 已提交
291
def buffered(reader, size):
292 293
    """
    Creates a buffered data reader.
294

H
Helin Wang 已提交
295 296
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
297
    as the buffer is not empty.
298

299
    :param reader: the data reader to read from.
Y
Yu Yang 已提交
300
    :type reader: callable
301
    :param size: max buffer size.
Y
Yu Yang 已提交
302
    :type size: int
303

304
    :returns: the buffered data reader.
305 306 307 308 309 310 311 312 313 314 315 316
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
317 318
    def data_reader():
        r = reader()
319
        q = Queue(maxsize=size)
320 321 322 323 324 325 326 327 328 329 330
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
331
    return data_reader
Y
Yu Yang 已提交
332 333


Y
Yu Yang 已提交
334
def firstn(reader, n):
Y
Yu Yang 已提交
335
    """
336 337 338 339 340
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
    
    This API creates a decorated reader, and limits the max number of 
    samples that reader could return.
Y
Yu Yang 已提交
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
            # the outputs are: 0 1 2 3 4  
Y
Yu Yang 已提交
361 362
    """

Y
Yu Yang 已提交
363 364 365 366
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
367
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
368
            if i == n:
Y
Yu Yang 已提交
369 370 371
                break
            yield item

Y
Yu Yang 已提交
372
    return firstn_reader
373 374 375 376 377 378


class XmapEndSignal():
    pass


379
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
380
    """
Z
Zeng Jinle 已提交
381 382 383 384 385 386 387 388 389 390 391 392
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
        reader (callable): a data reader which yields the data. 
        process_num (int): thread number to handle original sample.
        buffer_size (int): size of the queue to read data in. 
        order (bool): whether to keep the data order from original reader. 
            Default False.

    Returns:
        callable: a decorated reader with data mapping. 
393 394
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
395

396 397 398 399 400
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
401

402 403 404 405
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
406 407
            in_queue.put((in_order, i))
            in_order += 1
408
        in_queue.put(end)
409 410 411 412 413 414 415 416 417 418 419

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
420

421 422 423 424 425 426 427 428 429 430
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
431
            out_order[0] += 1
432 433 434
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
435 436

    def xreader():
437 438
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
439 440 441 442 443 444 445 446 447 448 449
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
450
        for i in range(process_num):
451 452 453 454 455 456
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

457 458 459 460 461 462 463 464 465 466 467 468 469
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
470 471


Q
Qiao Longfei 已提交
472 473
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
474 475
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge 
T
tianshuo78520a 已提交
476
    these data. A separate process will be created for each reader in the 
477 478 479 480
    ``readers`` list, please guarantee every reader can work independently 
    to avoid conflicts in parallel environment.
    

T
tianshuo78520a 已提交
481
    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not supported 
482
    in some platforms.
Q
Qiao Longfei 已提交
483

484 485 486 487 488 489 490 491
    Parameters:
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list 
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
492

493 494
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
495

496 497

    Example:
Q
Qiao Longfei 已提交
498 499 500

    .. code-block:: python

501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
        
        sample_files = ['sample_file_1', 'sample_file_2']
        
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
        
        
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
        
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
            
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2]) 
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
            
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
            
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
            
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
            
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
            
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
552 553
    """

554 555 556 557
    if sys.platform == 'win32':
        raise NotImplementedError(
            "The multiprocess_reader method is not supported on windows.")

Q
Qiao Longfei 已提交
558 559 560 561 562 563 564 565 566
    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
567 568 569 570 571 572 573 574 575
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
576 577

    def queue_reader():
578
        queue = fork_context.Queue(queue_size)
Q
Qiao Longfei 已提交
579
        for reader in readers:
580
            p = fork_context.Process(
Q
Qiao Longfei 已提交
581 582 583 584 585 586 587 588 589
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
590 591
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
592 593 594 595
            else:
                yield sample

    def _read_into_pipe(reader, conn):
596 597 598 599 600 601 602 603 604 605 606
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
607 608 609 610

    def pipe_reader():
        conns = []
        for reader in readers:
611
            parent_conn, child_conn = fork_context.Pipe()
Q
Qiao Longfei 已提交
612
            conns.append(parent_conn)
613
            p = fork_context.Process(
Q
Qiao Longfei 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
630 631 632 633
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
634 635 636 637 638 639 640
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader