decorator.py 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
tangwei12 已提交
15
from threading import Thread
Q
Qiao Longfei 已提交
16
import multiprocessing
17
import six
Q
Qiao Longfei 已提交
18
import sys
19
import warnings
20
import logging
T
tangwei12 已提交
21

22 23 24
from queue import Queue
from itertools import zip_longest

25 26
import itertools
import random
27 28

from paddle.fluid.reader import QUEUE_GET_TIMEOUT
29

30 31
__all__ = []

32
# On macOS, the 'spawn' start method is now the default in Python3.8 multiprocessing,
33
# Paddle is currently unable to solve this, so forces the process to start using
34 35
# the 'fork' start method.
#
36
# TODO: This solution is not good, because the fork start method could lead to
37 38 39 40 41
# crashes of the subprocess. Figure out how to make 'spawn' work.
#
# For more details, please refer to
# https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods
# https://bugs.python.org/issue33725
42
if sys.version_info >= (3, 8) and sys.platform == 'darwin':
43 44 45 46
    fork_context = multiprocessing.get_context('fork')
else:
    fork_context = multiprocessing

47

S
sneaxiy 已提交
48 49
def cache(reader):
    """
50
    Cache the reader data into memory.
S
sneaxiy 已提交
51

52 53 54
    Be careful that this method may take long time to process,
    and consume lots of memory. :code:`reader()` would only
    call once.
S
sneaxiy 已提交
55 56

    Args:
57
        reader (generator): a reader object which yields
S
sneaxiy 已提交
58 59 60
            data each time.

    Returns:
S
sneaxiy 已提交
61
        generator: a decorated reader object which yields data from cached memory.
62

63 64 65 66
    Examples:
        .. code-block:: python

            import paddle
67

68 69 70
            def reader():
                for i in range(3):
                    yield i
71

72 73
            # All data is cached into memory
            cached_reader = paddle.io.cache(reader)
74

75 76 77
            # Output: 0 1 2
            for i in cached_reader():
                print(i)
S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
88 89 90
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
91
    output of each data reader as arguments.
H
Helin Wang 已提交
92

93 94 95 96 97 98
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
99
        func: a function to read data and compute result, the output of this function
100 101
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
102

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
118 119 120 121 122 123
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
124
        for e in map(func, *rs):
H
Helin Wang 已提交
125 126 127 128 129
            yield e

    return reader


H
Helin Wang 已提交
130
def shuffle(reader, buf_size):
131
    """
132 133
    paddle.fluid.io.shuffle ( :ref:`api_fluid_io_shuffle` ) is recommended to use,
    and paddle.reader.shuffle is an alias.
134

135
    This API creates a decorated reader that outputs the shuffled data.
136

137
    The output data from the origin reader will be saved into a buffer,
138
    and then shuffle the data. The size of buffer is determined by argument buf_size.
139

140 141 142
    Args:
        reader(callable): the original reader whose data will be shuffled.
        buf_size(int): the size of shuffled buffer.
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    Returns:
        callable: a decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(5):
                    yield i
            shuffled_reader = fluid.io.shuffle(reader, 3)
            for e in shuffled_reader():
                print(e)
            # outputs are 0~4 unordered arrangement
159 160
    """

H
Helin Wang 已提交
161
    def data_reader():
162
        buf = []
H
Helin Wang 已提交
163
        for e in reader():
164 165 166 167 168 169 170 171 172 173 174 175
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
176
    return data_reader
177 178


H
Helin Wang 已提交
179
def chain(*readers):
180
    """
181
    Use the input data readers to create a chained data reader. The new created reader
182 183
    chains the outputs of input readers together as its output, and it do not change
    the format of the outputs.
184

185 186 187 188 189 190 191 192
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
193
    The chained reader will output:
194
    [0, 0, 0], [10, 10, 10], [20, 20, 20].
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
226 227 228

    """

H
Helin Wang 已提交
229
    def reader():
230
        rs = []
H
Helin Wang 已提交
231
        for r in readers:
232 233 234 235 236
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
237
    return reader
238 239


H
Helin Wang 已提交
240
class ComposeNotAligned(ValueError):
241 242 243
    pass


H
Helin Wang 已提交
244
def compose(*readers, **kwargs):
245 246
    """
    Creates a data reader whose output is the combination of input readers.
247

H
Helin Wang 已提交
248
    If input readers output following data entries:
249
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
250
    The composed reader will output:
251 252
    (1, 2, 3, 4, 5)

H
huzhiqiang 已提交
253
    Args:
254
        readers (Reader|list of Reader): readers that will be composed together.
H
huzhiqiang 已提交
255 256 257 258 259
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

260
    Returns:
H
huzhiqiang 已提交
261 262 263 264
        the new data reader (Reader).

    Examples:
        .. code-block:: python
265

H
huzhiqiang 已提交
266 267 268 269 270 271 272
          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
273 274 275 276 277 278 279
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
280
            return (x,)
281

H
Helin Wang 已提交
282
    def reader():
283
        rs = []
H
Helin Wang 已提交
284
        for r in readers:
285 286
            rs.append(r())
        if not check_alignment:
287 288
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
289
        else:
290
            for outputs in zip_longest(*rs):
291 292 293
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
294
                        raise ComposeNotAligned(
295 296
                            "outputs of readers are not aligned."
                        )
297
                yield sum(list(map(make_tuple, outputs)), ())
298

H
Helin Wang 已提交
299
    return reader
300 301


H
Helin Wang 已提交
302
def buffered(reader, size):
303 304
    """
    Creates a buffered data reader.
305

H
Helin Wang 已提交
306 307
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
308
    as the buffer is not empty.
309

310 311 312 313 314 315
    Args:
        reader(generator): the data reader to read from.
        size(int): max buffer size.

    Returns:
        generator: the buffered data reader.
316

317 318
    Examples:
        .. code-block:: python
319

320
            import paddle
321

322 323 324
            def reader():
                for i in range(3):
                    yield i
325

326 327
            # Create a buffered reader, and the buffer size is 2.
            buffered_reader = paddle.io.buffered(reader, 2)
328

329 330 331
            # Output: 0 1 2
            for i in buffered_reader():
                print(i)
332 333
    """

334
    class EndSignal:
335 336 337 338 339 340 341 342 343
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
344 345
    def data_reader():
        r = reader()
346
        q = Queue(maxsize=size)
347 348 349 350 351 352 353
        t = Thread(
            target=read_worker,
            args=(
                r,
                q,
            ),
        )
354 355 356 357 358 359 360
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
361
    return data_reader
Y
Yu Yang 已提交
362 363


Y
Yu Yang 已提交
364
def firstn(reader, n):
Y
Yu Yang 已提交
365
    """
366 367
    paddle.fluid.io.firstn ( :ref:`api_fluid_io_firstn` ) is recommended to use,
    and paddle.reader.firstn is an alias.
368 369

    This API creates a decorated reader, and limits the max number of
370
    samples that reader could return.
Y
Yu Yang 已提交
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    Args:
        reader(callable): the input reader.
        n(int): the max number of samples in the reader.

    Returns:
        callable: the decorated reader.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            def reader():
                for i in range(100):
                    yield i
            firstn_reader = fluid.io.firstn(reader, 5)
            for e in firstn_reader():
                print(e)
390
            # the outputs are: 0 1 2 3 4
Y
Yu Yang 已提交
391 392
    """

Y
Yu Yang 已提交
393 394 395 396
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
397
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
398
            if i == n:
Y
Yu Yang 已提交
399 400 401
                break
            yield item

Y
Yu Yang 已提交
402
    return firstn_reader
403 404


405
class XmapEndSignal:
406 407 408
    pass


409
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
410
    """
Z
Zeng Jinle 已提交
411 412 413 414
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
415
        reader (callable): a data reader which yields the data.
Z
Zeng Jinle 已提交
416
        process_num (int): thread number to handle original sample.
417 418
        buffer_size (int): size of the queue to read data in.
        order (bool): whether to keep the data order from original reader.
Z
Zeng Jinle 已提交
419 420 421
            Default False.

    Returns:
422
        callable: a decorated reader with data mapping.
423 424
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
425

426 427 428 429 430
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
431

432 433 434 435
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
436 437
            in_queue.put((in_order, i))
            in_order += 1
438
        in_queue.put(end)
439 440 441 442 443 444 445 446 447 448 449

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
450

451 452 453 454 455 456 457 458 459 460
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
461
            out_order[0] += 1
462 463 464
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
465 466

    def xreader():
467 468
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
469 470 471 472 473 474 475 476
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
477 478 479 480 481
        args = (
            (in_queue, out_queue, mapper, out_order)
            if order
            else (in_queue, out_queue, mapper)
        )
482
        workers = []
483
        for i in range(process_num):
484 485 486 487 488 489
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

490 491 492 493 494 495 496 497 498 499 500 501 502
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
503 504


Q
Qiao Longfei 已提交
505 506
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
507
    This API use python ``multiprocessing`` to read data from ``readers`` parallelly,
508 509 510
    and then ``multiprocess.Queue`` or ``multiprocess.Pipe`` is used to merge
    these data. A separate process will be created for each reader in the
    ``readers`` list, please guarantee every reader can work independently
511 512
    to avoid conflicts in parallel environment.

513 514

    ``Multiprocess.Queue`` require the rw access right to /dev/shm, and it's not supported
515
    in some platforms.
Q
Qiao Longfei 已提交
516

517
    Parameters:
518
       readers (list( ``generator`` ) | tuple( ``generator`` )): a python ``generator`` list
519 520 521 522 523 524
           used to read input data
       use_pipe (bool, optional): control the inner API used to implement the multi-processing,
           default True - use ``multiprocess.Pipe`` which is recommended
       queue_size (int, optional): only useful when ``use_pipe`` is False - ``multiprocess.Queue``
           is used, default 1000. Increase this value can speed up the data reading, and more memory
           will be consumed.
Q
Qiao Longfei 已提交
525

526 527
    Returns:
        ``generator``: a new reader which can be run parallelly
Q
Qiao Longfei 已提交
528

529 530

    Example:
Q
Qiao Longfei 已提交
531 532 533

    .. code-block:: python

534 535 536
        import paddle.fluid as fluid
        from paddle.fluid.io import multiprocess_reader
        import numpy as np
537

538
        sample_files = ['sample_file_1', 'sample_file_2']
539

540 541 542 543 544
        def fake_input_files():
            with open(sample_files[0], 'w') as f:
               np.savez(f, a=np.array([1, 2]), b=np.array([3, 4]), c=np.array([5, 6]), d=np.array([7, 8]))
            with open(sample_files[1], 'w') as f:
               np.savez(f, a=np.array([9, 10]), b=np.array([11, 12]), c=np.array([13, 14]))
545 546


547 548 549 550 551 552 553
        def generate_reader(file_name):
            # load data file
            def _impl():
                data = np.load(file_name)
                for item in sorted(data.files):
                    yield data[item],
            return _impl
554

555 556 557
        if __name__ == '__main__':
            # generate sample input files
            fake_input_files()
558

559 560 561
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                place = fluid.CPUPlace()
                # the 1st 2 is batch size
562
                image = fluid.data(name='image', dtype='int64', shape=[2, 1, 2])
563 564
                fluid.layers.Print(image)
                # print detailed tensor info of image variable
565

566
                reader = fluid.io.PyReader(feed_list=[image], capacity=2)
567

568 569
                decorated_reader = multiprocess_reader(
                    [generate_reader(sample_files[0]), generate_reader(sample_files[1])], False)
570

571
                reader.decorate_sample_generator(decorated_reader, batch_size=2, places=[place])
572

573 574
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
575

576 577 578 579 580 581 582 583 584
                for data in reader():
                    res = exe.run(feed=data, fetch_list=[image])
                    print(res[0])
                    # print below content in this case
                    # [[[1 2]], [[3 4]]]
                    # [[[5 6]], [[7 8]]]
                    # [[[9 10]], [[11 12]]]
                    # [13,14] will be dropped

Q
Qiao Longfei 已提交
585 586
    """

587 588
    if sys.platform == 'win32':
        raise NotImplementedError(
589 590
            "The multiprocess_reader method is not supported on windows."
        )
591

592
    # ujson is ultra fast json encoder and decoder written in pure C with bindings for Python 3.6+.
Q
Qiao Longfei 已提交
593 594 595
    try:
        import ujson as json
    except Exception as e:
596 597
        warnings.warn(
            "The `ujson` module is not found, use the `json` module, `ujson` encodes and decodes faster, "
598 599
            "you can install `ujson` through `pip install ujson`."
        )
Q
Qiao Longfei 已提交
600 601
        import json

602 603 604
    assert (
        isinstance(readers, (list, tuple)) and len(readers) > 0
    ), "`readers` must be list or tuple."
Q
Qiao Longfei 已提交
605 606

    def _read_into_queue(reader, queue):
607 608 609 610 611 612 613 614 615
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
616 617

    def queue_reader():
618
        queue = fork_context.Queue(queue_size)
Q
Qiao Longfei 已提交
619
        for reader in readers:
620 621 622
            p = fork_context.Process(
                target=_read_into_queue, args=(reader, queue)
            )
Q
Qiao Longfei 已提交
623 624 625 626 627
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
628 629 630 631 632 633 634 635
            try:
                sample = queue.get(timeout=QUEUE_GET_TIMEOUT)
            except:
                logging.error(
                    "multiprocess_reader failed to get data from the multiprocessing.Queue."
                )
                six.reraise(*sys.exc_info())

Q
Qiao Longfei 已提交
636 637
            if sample is None:
                finish_num += 1
638
            elif sample == "":
639 640 641
                raise ValueError(
                    "multiprocess_reader failed to put data into the multiprocessing.Queue."
                )
Q
Qiao Longfei 已提交
642 643 644 645
            else:
                yield sample

    def _read_into_pipe(reader, conn):
646 647 648 649 650 651 652 653 654 655 656
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
657 658 659 660

    def pipe_reader():
        conns = []
        for reader in readers:
661
            parent_conn, child_conn = fork_context.Pipe()
Q
Qiao Longfei 已提交
662
            conns.append(parent_conn)
663 664 665
            p = fork_context.Process(
                target=_read_into_pipe, args=(reader, child_conn)
            )
Q
Qiao Longfei 已提交
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
681 682 683
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
684 685 686
                    raise ValueError(
                        "multiprocess_reader failed to send data into the multiprocessing.Pipe."
                    )
Q
Qiao Longfei 已提交
687 688 689 690 691 692 693
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader