distribute_transpiler.py 49.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
typhoonzero 已提交
17
import math
18

Y
Yancey1989 已提交
19 20
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
from .. import core, framework
T
typhoonzero 已提交
21 22 23
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
24 25 26 27

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
28 29


T
typhoonzero 已提交
30 31 32 33 34 35
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
36

T
typhoonzero 已提交
37 38
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
39 40


41
class UnionFind(object):
42
    """ Union-find data structure.
43

44
    Union-find is a data structure that keeps track of a set of elements partitioned
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


92 93 94 95
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
96 97 98 99 100
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
101
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
102 103
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
104

T
typhoonzero 已提交
105 106
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
107 108
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
109 110
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
129
        # update split_count after aligning
T
typhoonzero 已提交
130 131 132 133 134 135 136 137 138
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


139 140 141 142 143 144 145 146 147 148
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


Y
Yancey1989 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162
def find_op_by_input_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.input_arg_names:
            return index
    return -1


def find_op_by_output_arg(block, arg_name):
    for index, op in enumerate(block.ops):
        if arg_name in op.output_arg_names:
            return index
    return -1


T
done  
typhoonzero 已提交
163 164
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
165
                  trainer_id,
T
done  
typhoonzero 已提交
166 167 168
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Y
Yancey1989 已提交
169
                  split_method=RoundRobin,
Q
tmp  
qiaolongfei 已提交
170
                  sync_mode=True):
T
done  
typhoonzero 已提交
171
        """
T
typhoonzero 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
209
        """
Y
Yancey1989 已提交
210
        assert (split_method.__bases__[0] == PSDispatcher)
T
done  
typhoonzero 已提交
211 212
        if program is None:
            program = default_main_program()
213 214
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
215
        self.sync_mode = sync_mode
T
typhoonzero 已提交
216 217 218 219
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
220
        pserver_endpoints = pservers.split(",")
221
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
222
        self.optimize_ops, params_grads = self._get_optimize_pass()
Y
Yancey1989 已提交
223
        ps_dispatcher = split_method(pserver_endpoints)
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
246

247 248
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
249 250 251 252 253 254 255 256
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
257 258 259 260 261 262 263

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
264
                if grad.name != grad_var_name(self.table_name)
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
281 282
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
Y
update  
Yancey1989 已提交
283
        assert (len(grad_blocks) == len(param_blocks))
284 285 286 287
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
Y
update  
Yancey1989 已提交
288 289 290 291 292 293 294 295 296
        grad_var_mapping = self._create_vars_from_blocklist(
            program, grad_blocks, add_trainer_suffix=self.trainer_num > 1)
        grad_param_mapping = dict()
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
            grad_param_mapping[grad_var_mapping[g_name][int(g_bid)]] =  \
                    param_var_mapping[p_name][int(p_bid)]

T
typhoonzero 已提交
297
        rpc_client_var = program.global_block().create_var(
298
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
299
            persistable=True,
T
typhoonzero 已提交
300
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
301

Y
Yancey1989 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
        # step 3: transpile trainer side program, insert recv op and send op.

        # create mapping of endpoint -> split var to create pserver side program
        self.param_grad_ep_mapping = dict()
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
317
        send_vars = []
Y
Yancey1989 已提交
318
        for orig_varname, splited_vars in grad_var_mapping.items():
Y
update  
Yancey1989 已提交
319
            eplist = ps_dispatcher.dispatch(splited_vars)
Y
Yancey1989 已提交
320 321 322 323 324 325 326 327 328
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
329
                index += 1
Y
Yancey1989 已提交
330 331 332 333
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
334
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
335
                index=index + 1,
Y
Yancey1989 已提交
336
                type="send_vars",
Y
update  
Yancey1989 已提交
337
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
338 339
                outputs={"RPCClient": rpc_client_var},
                attrs={"epmap": eplist})
Y
update  
Yancey1989 已提交
340 341
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
342 343 344 345 346 347 348 349 350 351

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
                outputs={"RPCClient": rpc_client_var},
                attrs={"endpoints": pserver_endpoints})

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
352 353 354
        for _, var in enumerate(send_vars):
            recv_vars.append(grad_param_mapping[var])
        ps_dispatcher.reset()
Y
Yancey1989 已提交
355 356
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
357
        program.global_block().append_op(
Y
Yancey1989 已提交
358 359 360
            type="recv",
            inputs={},
            outputs={"Out": recv_vars,
T
typhoonzero 已提交
361
                     "RPCClient": rpc_client_var},
Y
Yancey1989 已提交
362
            attrs={"epmap": eplist})
T
typhoonzero 已提交
363

Y
Yancey1989 已提交
364 365 366 367 368 369
        program.global_block().append_op(
            type="fetch_barrier",
            inputs={},
            outputs={"RPCClient": rpc_client_var},
            attrs={"endpoints": pserver_endpoints})

Y
update  
Yancey1989 已提交
370 371 372 373
        for i, ep in enumerate(eplist):
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])

Y
Yancey1989 已提交
374
        # TODO(Yancey1989): check dist lookup table
375 376 377 378 379 380
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
381 382
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
383
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
384
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
385 386
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
387 388 389 390

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
391
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
392 393 394 395 396 397
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
398
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
399 400 401 402 403 404 405 406
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
407 408 409 410 411 412

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
413 414 415 416 417 418 419 420 421
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
422
            if self.sync_mode and self.trainer_num > 1:
423
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
424 425 426 427 428 429 430 431 432
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
433

Q
qiaolongfei 已提交
434
        # step 3
435
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
436 437 438
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
439
        # step 3.2
T
typhoonzero 已提交
440 441 442 443 444 445
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
446
        # step 3.3
T
typhoonzero 已提交
447
        # Iterate through the ops, and if an op and the optimize ops
448
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
449
        # append it into the sub program.
T
typhoonzero 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
466 467
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
468

Q
qiaolongfei 已提交
469
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
470
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
471
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
472 473 474 475
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

476
        # append lr decay ops to the child block if exists
477 478
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
479 480
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
481
            for _, op in enumerate(lr_ops):
482
                self._append_pserver_non_opt_ops(lr_decay_block, op)
483

T
typhoonzero 已提交
484
        # append op to the current block
Q
qiaolongfei 已提交
485
        grad_to_block_id = []
Q
qiaolongfei 已提交
486
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
487
        for idx, opt_op in enumerate(opt_op_on_pserver):
488
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
489 490
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
491
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
492
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
493 494

        # append global ops
495
        if global_ops:
Q
qiaolongfei 已提交
496 497 498
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
499 500
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
501 502 503 504 505 506 507 508 509

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

510 511 512 513
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
514
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
515
                pserver_index, pserver_program, pre_block_idx)
516
            prefetch_block = self._create_prefetch_block(
517
                pserver_index, pserver_program, table_opt_block)
518 519 520 521 522 523 524 525 526

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
527 528 529 530 531 532
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
533
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
534
                "endpoint": endpoint,
535
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
536 537
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
538
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
539
            })
540

T
typhoonzero 已提交
541 542 543 544 545 546 547 548 549 550
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
551
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
565
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
667
                    delete_ops(program.global_block(), [op])
668 669 670 671 672 673 674 675
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
676
        table_grad_name = grad_var_name(self.table_name)
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
715
            type="lookup_sparse_table",
716 717 718 719 720 721 722 723 724 725 726
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
727
                                     pre_block_idx):
728 729 730 731 732 733 734 735 736 737 738
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
739 740 741 742 743 744 745 746
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
747 748
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
749
            self.origin_program.global_block().vars[grad_var_name(
750 751 752 753 754 755 756 757
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
758
        table_opt_block = pserver_program.create_block(pre_block_idx)
759 760 761
        # only support sgd now
        assert table_opt_op.type == "sgd"

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

795 796
        return table_opt_block

T
typhoonzero 已提交
797 798 799 800 801 802
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
803
        Create vars for each split.
T
typhoonzero 已提交
804 805
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
806
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
807
        """
T
typhoonzero 已提交
808
        block_map = dict()
T
typhoonzero 已提交
809
        var_mapping = dict()
T
typhoonzero 已提交
810 811 812 813 814 815
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
816
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
817
            if len(splited) == 1:
818
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
819 820 821 822 823 824 825 826
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
827
                continue
T
typhoonzero 已提交
828 829

            var_mapping[varname] = []
T
typhoonzero 已提交
830 831 832 833
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
834

T
typhoonzero 已提交
835
            for i, block in enumerate(splited):
T
typhoonzero 已提交
836
                size = block[1]
T
typhoonzero 已提交
837 838 839 840
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
841
                new_var_name = ""
842
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
843 844 845 846 847
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
848
                var = program.global_block().create_var(
T
typhoonzero 已提交
849 850
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
851
                    dtype=orig_var.dtype,
852
                    type=orig_var.type,
T
typhoonzero 已提交
853
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
854
                var_mapping[varname].append(var)
T
typhoonzero 已提交
855
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
856
        return var_mapping
T
done  
typhoonzero 已提交
857

858 859 860 861 862 863 864 865 866 867 868
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
869 870 871 872 873 874 875
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
876
            persistable=persistable)
T
done  
typhoonzero 已提交
877

Y
Yancey1989 已提交
878
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")

T
typhoonzero 已提交
904 905 906 907
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
908
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
931 932 933 934 935
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
936 937
        else:
            orig_var_name = varname
T
typhoonzero 已提交
938 939
        return orig_var_name

940
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
941
                            grad_to_block_id, origin_program):
942
        program = optimize_block.program
T
typhoonzero 已提交
943
        pserver_block = program.global_block()
T
typhoonzero 已提交
944
        new_inputs = dict()
T
typhoonzero 已提交
945 946
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
947
        for key in opt_op.input_names:
T
typhoonzero 已提交
948 949 950
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
951
                    if same_or_split_var(
T
typhoonzero 已提交
952 953
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
954 955 956 957 958 959
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
960 961
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
962 963
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
964
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
965
                    vars2merge = []
966
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
967 968 969 970
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

971
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
972 973 974
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
975
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
976 977 978 979 980
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
981
                            attrs={"scale": 1.0 / float(self.trainer_num)})
982

T
typhoonzero 已提交
983 984 985 986 987
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
988
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
989 990 991 992
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
993
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
994
                    name=param_block.name,
T
typhoonzero 已提交
995
                    persistable=True,
T
typhoonzero 已提交
996 997 998
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
999
            elif key == "LearningRate":
1000
                # learning rate variable has already be created by non-optimize op,
1001
                # don't create it once again.
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1013

T
typhoonzero 已提交
1014
        for key in opt_op.input_names:
1015 1016
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1017
                continue
1018
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1019 1020 1021 1022
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1023
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1024 1025 1026 1027 1028
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1029

1030
        # change output's ParamOut variable
1031 1032
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1033
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1034

1035
        optimize_block.append_op(
T
typhoonzero 已提交
1036 1037
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1038
            outputs=outputs,
T
typhoonzero 已提交
1039 1040
            attrs=opt_op.attrs)

1041 1042
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1043
        # Append the ops for parameters that do not need to be optimized/updated
1044 1045
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1046 1047 1048 1049
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1050
            for var in varlist:
1051 1052
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1053 1054 1055 1056 1057
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1058 1059
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1060

1061 1062 1063 1064 1065
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1066
                program.global_block().clone_variable(var)
1067

1068
        optimize_block.append_op(
T
typhoonzero 已提交
1069
            type=opt_op.type,
T
typhoonzero 已提交
1070 1071
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1072 1073
            attrs=opt_op.attrs)

1074 1075 1076 1077
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1091 1092
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1093
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1094
        op2_output_names = op2.desc.output_arg_names()
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1114
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1115 1116
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1117 1118 1119 1120 1121 1122 1123
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1124
        if op.input("Param")[0] in param_names:
1125 1126 1127
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1128
                param = op.input("Param")[0]
T
typhoonzero 已提交
1129
                if same_or_split_var(n, param) and n != param:
1130 1131 1132
                    return True
            return False

T
typhoonzero 已提交
1133
    def _get_input_map_from_op(self, varmap, op):
1134
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1147
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1169
        block = self.origin_program.global_block()
1170 1171 1172 1173 1174
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1175

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1188 1189
                    # we only need to append op for once
                    break
1190
        return lr_ops
Y
Yancey1989 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1203 1204
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1205 1206 1207
            else:
                pass
        return opt_ops, params_grads
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False