Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
55f0d840
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
55f0d840
编写于
5月 02, 2018
作者:
A
Abhinav Arora
提交者:
GitHub
5月 02, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix Cpplint Issues in fluid/inference/tensorrt/ (#10318)
* Fix CPPLint issues in fluid/inference/tensorrt/ * Fix compile errors
上级
0bc44c18
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
19 addition
and
19 deletion
+19
-19
paddle/fluid/inference/tensorrt/engine.h
paddle/fluid/inference/tensorrt/engine.h
+1
-1
paddle/fluid/inference/tensorrt/helper.h
paddle/fluid/inference/tensorrt/helper.h
+5
-5
paddle/fluid/inference/tensorrt/test_tensorrt.cc
paddle/fluid/inference/tensorrt/test_tensorrt.cc
+13
-13
未找到文件。
paddle/fluid/inference/tensorrt/engine.h
浏览文件 @
55f0d840
...
...
@@ -65,7 +65,7 @@ class TensorRTEngine : public EngineBase {
// Initialize the inference network, so that TensorRT layers can add to this
// network.
void
InitNetwork
()
{
infer_builder_
.
reset
(
createInferBuilder
(
logger_
));
infer_builder_
.
reset
(
createInferBuilder
(
&
logger_
));
infer_network_
.
reset
(
infer_builder_
->
createNetwork
());
}
// After finishing adding ops, freeze this network and creates the executation
...
...
paddle/fluid/inference/tensorrt/helper.h
浏览文件 @
55f0d840
...
...
@@ -46,13 +46,13 @@ const int kDataTypeSize[] = {
// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
static
nvinfer1
::
IBuilder
*
createInferBuilder
(
nvinfer1
::
ILogger
&
logger
)
{
static
nvinfer1
::
IBuilder
*
createInferBuilder
(
nvinfer1
::
ILogger
*
logger
)
{
return
static_cast
<
nvinfer1
::
IBuilder
*>
(
dy
::
createInferBuilder_INTERNAL
(
&
logger
,
NV_TENSORRT_VERSION
));
dy
::
createInferBuilder_INTERNAL
(
logger
,
NV_TENSORRT_VERSION
));
}
static
nvinfer1
::
IRuntime
*
createInferRuntime
(
nvinfer1
::
ILogger
&
logger
)
{
static
nvinfer1
::
IRuntime
*
createInferRuntime
(
nvinfer1
::
ILogger
*
logger
)
{
return
static_cast
<
nvinfer1
::
IRuntime
*>
(
dy
::
createInferRuntime_INTERNAL
(
&
logger
,
NV_TENSORRT_VERSION
));
dy
::
createInferRuntime_INTERNAL
(
logger
,
NV_TENSORRT_VERSION
));
}
// A logger for create TensorRT infer builder.
...
...
@@ -80,7 +80,7 @@ class NaiveLogger : public nvinfer1::ILogger {
return
*
x
;
}
virtual
~
NaiveLogger
()
override
{}
~
NaiveLogger
()
override
{}
};
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/test_tensorrt.cc
浏览文件 @
55f0d840
...
...
@@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include "NvInfer.h"
#include "cuda.h"
#include "cuda_runtime_api.h"
#include "paddle/fluid/platform/dynload/tensorrt.h"
namespace
dy
=
paddle
::
platform
::
dynload
;
...
...
@@ -43,7 +43,7 @@ class Logger : public nvinfer1::ILogger {
class
ScopedWeights
{
public:
ScopedWeights
(
float
value
)
:
value_
(
value
)
{
explicit
ScopedWeights
(
float
value
)
:
value_
(
value
)
{
w
.
type
=
nvinfer1
::
DataType
::
kFLOAT
;
w
.
values
=
&
value_
;
w
.
count
=
1
;
...
...
@@ -58,13 +58,13 @@ class ScopedWeights {
// The following two API are implemented in TensorRT's header file, cannot load
// from the dynamic library. So create our own implementation and directly
// trigger the method from the dynamic library.
nvinfer1
::
IBuilder
*
createInferBuilder
(
nvinfer1
::
ILogger
&
logger
)
{
nvinfer1
::
IBuilder
*
createInferBuilder
(
nvinfer1
::
ILogger
*
logger
)
{
return
static_cast
<
nvinfer1
::
IBuilder
*>
(
dy
::
createInferBuilder_INTERNAL
(
&
logger
,
NV_TENSORRT_VERSION
));
dy
::
createInferBuilder_INTERNAL
(
logger
,
NV_TENSORRT_VERSION
));
}
nvinfer1
::
IRuntime
*
createInferRuntime
(
nvinfer1
::
ILogger
&
logger
)
{
nvinfer1
::
IRuntime
*
createInferRuntime
(
nvinfer1
::
ILogger
*
logger
)
{
return
static_cast
<
nvinfer1
::
IRuntime
*>
(
dy
::
createInferRuntime_INTERNAL
(
&
logger
,
NV_TENSORRT_VERSION
));
dy
::
createInferRuntime_INTERNAL
(
logger
,
NV_TENSORRT_VERSION
));
}
const
char
*
kInputTensor
=
"input"
;
...
...
@@ -74,7 +74,7 @@ const char* kOutputTensor = "output";
nvinfer1
::
IHostMemory
*
CreateNetwork
()
{
Logger
logger
;
// Create the engine.
nvinfer1
::
IBuilder
*
builder
=
createInferBuilder
(
logger
);
nvinfer1
::
IBuilder
*
builder
=
createInferBuilder
(
&
logger
);
ScopedWeights
weights
(
2.
);
ScopedWeights
bias
(
3.
);
...
...
@@ -103,9 +103,9 @@ nvinfer1::IHostMemory* CreateNetwork() {
return
model
;
}
void
Execute
(
nvinfer1
::
IExecutionContext
&
context
,
const
float
*
input
,
void
Execute
(
nvinfer1
::
IExecutionContext
*
context
,
const
float
*
input
,
float
*
output
)
{
const
nvinfer1
::
ICudaEngine
&
engine
=
context
.
getEngine
();
const
nvinfer1
::
ICudaEngine
&
engine
=
context
->
getEngine
();
// Two binds, input and output
ASSERT_EQ
(
engine
.
getNbBindings
(),
2
);
const
int
input_index
=
engine
.
getBindingIndex
(
kInputTensor
);
...
...
@@ -119,7 +119,7 @@ void Execute(nvinfer1::IExecutionContext& context, const float* input,
// Copy the input to the GPU, execute the network, and copy the output back.
ASSERT_EQ
(
0
,
cudaMemcpyAsync
(
buffers
[
input_index
],
input
,
sizeof
(
float
),
cudaMemcpyHostToDevice
,
stream
));
context
.
enqueue
(
1
,
buffers
,
stream
,
nullptr
);
context
->
enqueue
(
1
,
buffers
,
stream
,
nullptr
);
ASSERT_EQ
(
0
,
cudaMemcpyAsync
(
output
,
buffers
[
output_index
],
sizeof
(
float
),
cudaMemcpyDeviceToHost
,
stream
));
cudaStreamSynchronize
(
stream
);
...
...
@@ -136,7 +136,7 @@ TEST(TensorrtTest, BasicFunction) {
// Use the model to create an engine and an execution context.
Logger
logger
;
nvinfer1
::
IRuntime
*
runtime
=
createInferRuntime
(
logger
);
nvinfer1
::
IRuntime
*
runtime
=
createInferRuntime
(
&
logger
);
nvinfer1
::
ICudaEngine
*
engine
=
runtime
->
deserializeCudaEngine
(
model
->
data
(),
model
->
size
(),
nullptr
);
model
->
destroy
();
...
...
@@ -145,7 +145,7 @@ TEST(TensorrtTest, BasicFunction) {
// Execute the network.
float
input
=
1234
;
float
output
;
Execute
(
*
context
,
&
input
,
&
output
);
Execute
(
context
,
&
input
,
&
output
);
EXPECT_EQ
(
output
,
input
*
2
+
3
);
// Destroy the engine.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录