fleet.py 54.9 KB
Newer Older
W
wuhuachaocoding 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import os
17 18

import paddle
19
from paddle.fluid import compiler
20
from paddle.fluid.framework import in_dygraph_mode
21 22
from paddle.fluid.wrapped_decorator import wrap_decorator
from paddle.framework import _global_flags
23
from paddle.framework.ir import apply_build_strategy
24

W
wuhuachaocoding 已提交
25
from .base import topology as tp
26 27 28 29 30
from .base.distributed_strategy import DistributedStrategy
from .base.meta_optimizer_factory import MetaOptimizerFactory
from .base.role_maker import PaddleCloudRoleMaker, RoleMakerBase
from .base.runtime_factory import RuntimeFactory
from .base.strategy_compiler import StrategyCompiler
W
wuhuachaocoding 已提交
31
from .meta_parallel import model_parallel_random_seed
R
Roc 已提交
32
from .utils.log_util import logger, set_log_level
33

34 35
__all__ = []

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
51 52 53 54
        # have conflict with fuse_all_reduce_ops because
        # RawProgramOptimizer also inserts coalesce_tensor
        # into program. These two procedures may conflict
        # in which vars are to be fused.
R
Roc 已提交
55
        logger.warning(
56 57 58 59
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

60 61 62
    return apply_build_strategy(
        main_program, startup_program, build_strategy, pass_attrs
    )
63 64


65 66 67 68 69 70 71 72 73 74 75 76
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


77 78 79 80
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

81 82 83 84
        if (
            cls._role_maker is not None
            and cls._role_maker._is_non_distributed() is True
        ):
R
Roc 已提交
85
            logger.warning(
86 87 88
                "%s() function doesn't work when use non_distributed fleet."
                % (func.__name__)
            )
89 90 91 92 93 94 95
            return

        return func(*args, **kwargs)

    return __impl__


96
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
97
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
98 99


100
class Fleet:
101 102
    """
    Unified API for distributed training of PaddlePaddle
103
    Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
104 105 106 107 108


    Returns:
        Fleet: A Fleet instance

109
    Example for collective training:
1
123malin 已提交
110

111 112
        .. code-block:: python

1
123malin 已提交
113 114
            import paddle
            paddle.enable_static()
115
            import paddle.distributed.fleet as fleet
116 117 118

            fleet.init(is_collective=True)

119 120 121
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
122 123 124 125 126 127 128 129

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
130 131
            import paddle
            paddle.enable_static()
132 133
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
134
            fleet.init(strategy=strategy)
135

136
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
137
            optimizer = fleet.distributed_optimizer(optimizer)
138

139 140
            if fleet.is_first_worker():
                print("this is first worker")
141

142 143
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
144

145 146 147
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
148

149 150
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
151

152 153 154
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
155 156


157 158 159
    """

    def __init__(self):
160
        self._role_maker = None
161
        self.strategy_compiler = None
162
        self._is_collective = False
163
        self._runtime_handle = None
D
Dong Daxiang 已提交
164 165
        self._util = None
        self._context = {}
W
wuhuachaocoding 已提交
166
        self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0)
167

168 169 170 171 172 173 174
    def init(
        self,
        role_maker=None,
        is_collective=False,
        strategy=None,
        log_level="INFO",
    ):
175 176 177
        """
        Initialize role_maker in Fleet.

178 179 180 181 182
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
183
                of environment variables related to distributed training.If you did not initialize
184 185
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
186
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program
187
                runs on Collective mode or ParameterServer mode. True means the program runs on
188
                Collective mode, and False means running on ParameterServer mode. The default value
189
                is False.
190
            strategy (DistributedStrategy): Extra properties for distributed training.
191
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.
R
Roc 已提交
192 193
            log_level (Integer, String, optional): A ``Integer`` or ``String`` Variable determining how hight
                the logging level is. Default is "INFO".
194 195


196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
218
                role = fleet.PaddleCloudRoleMaker()
219
                fleet.init(role)
220

221 222 223 224 225 226
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
227
                fleet.init(strategy=strategy)
228

R
Roc 已提交
229 230 231 232 233 234 235 236
        Examples5:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(log_level = "DEBUG")

237
        """
Q
qizhaoaoe 已提交
238
        from paddle.distributed import parallel_helper
R
Roc 已提交
239 240 241

        set_log_level(log_level)

S
ShenLiang 已提交
242 243 244
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
245 246

        if role_maker is None:
247 248 249
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
250 251
                    is_collective=self._is_collective
                )
252 253
            else:
                raise ValueError(
254 255 256 257
                    "`is_collective` should be instance of `bool`, but got {}".format(
                        type(is_collective)
                    )
                )
258
        else:
259 260
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
261
                self._is_collective = role_maker._is_collective
262 263
            else:
                raise ValueError(
264 265 266 267
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".format(
                        type(role_maker)
                    )
                )
268
        self._role_maker._generate_role()
269

270
        import paddle.distributed.fleet as fleet
271

272 273
        fleet.util._set_role_maker(self._role_maker)

274
        self.strategy_compiler = StrategyCompiler()
275 276

        if self._role_maker._is_non_distributed() and self._is_collective:
277 278
            if paddle.framework.core.is_compiled_with_cuda():
                gpus_num = paddle.framework.core.get_cuda_device_count()
279 280 281 282 283
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

284
        if in_dygraph_mode():
285
            if self.worker_num() == 1:
286 287 288
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
289
                return
290
            if parallel_helper._is_parallel_ctx_initialized():
R
Roc 已提交
291
                logger.warning(
292 293
                    "The dygraph parallel environment has been initialized."
                )
294
            else:
295 296
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
R
Roc 已提交
297
                    logger.warning(
298 299
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
300 301
                        "DistributedStrategy will not take effect here."
                    )
302 303
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
304 305
                        self._user_defined_strategy.nccl_comm_num
                    )
306
                paddle.distributed.init_parallel_env()
307

K
kuizhiqing 已提交
308
            # hybrid parallel not support for npu/xpu
309
            if not self._user_defined_strategy.heter_ccl_mode:
K
kuizhiqing 已提交
310 311 312 313
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
R
Roc 已提交
314
                    logger.warning(
K
kuizhiqing 已提交
315 316
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
317 318 319 320 321 322 323 324 325 326
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

327 328
            if tp._HYBRID_PARALLEL_GROUP is None:
                tp._CommunicateGroup()
W
WangXi 已提交
329 330
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
331 332 333 334 335 336 337
            cg.set_comm_group(
                'global',
                global_rank,
                global_world_size,
                global_ring_id,
                global_ranks,
            )
W
WangXi 已提交
338

Y
Yuang Liu 已提交
339 340 341
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
342
            # hybrid group
343 344
            if use_mp is False:
                return
Y
Yuang Liu 已提交
345 346 347 348 349 350 351 352

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
353 354 355
                tensor_parallel_configs = (
                    self._user_defined_strategy.tensor_parallel_configs
                )
356
                mp_degree_tensor_parallel = int(
357 358
                    tensor_parallel_configs['tensor_parallel_degree']
                )
Y
Yuang Liu 已提交
359 360 361

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
362

363 364 365 366 367
            mp_degree = (
                mp_degree_sharding
                if use_sharding
                else mp_degree_tensor_parallel
            )
W
WangXi 已提交
368 369 370 371 372 373 374 375

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
376 377
                    idx
                    for idx in global_ranks
W
WangXi 已提交
378 379
                    if idx // mp_degree == mp_group_id
                ]
380 381 382
                cg.set_comm_group(
                    'model', mp_rank, mp_degree, mp_ring_id, mp_group_ranks
                )
W
wuhuachaocoding 已提交
383
        return self
384 385

    def _init_hybrid_parallel_env(self):
386
        """initialize the hybrid environment"""
387 388 389 390
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
391
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
392 393 394

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
395 396 397
        assert (
            self.sharding_degree >= 0
        ), "sharding_degree should be greater or equal to 0"
398 399 400 401 402 403 404 405 406 407

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

408 409 410 411 412 413 414 415 416 417 418
        d_hybrid_degree = {
            "dp": ["data", self.dp_degree],
            "pp": ['pipe', self.pp_degree],
            "sharding": ['sharding', self.sharding_degree],
            "mp": ['model', self.mp_degree],
        }

        order = self.hybrid_configs["order"]
        if not order:
            order = ['dp', 'pp', 'sharding', 'mp']
        if order[:].sort() != list(d_hybrid_degree.keys())[:].sort():
419 420 421
            raise AssertionError(
                'The order of hybrid_config setting is incorrect.'
            )
422 423 424 425 426 427 428 429

        hybrid_group_names = []
        dims = []
        for h_name in order:
            name, degree = d_hybrid_degree[h_name]
            hybrid_group_names.append(name)
            dims.append(degree)

430
        self._topology = tp.CommunicateTopology(
431
            hybrid_group_names=hybrid_group_names, dims=dims
432
        )
433 434 435

        self._hcg = tp.HybridCommunicateGroup(self._topology)

436
        if self.mp_degree > 1:
437 438 439
            tensor_parallel_configs = (
                self._user_defined_strategy.tensor_parallel_configs
            )
440 441 442 443 444 445
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

446 447 448 449 450 451 452 453
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

454 455 456 457 458 459 460
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
461

462 463 464 465 466 467 468 469
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

470
        """
471
        return self._role_maker._is_first_worker()
472 473 474 475 476 477 478

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
479 480 481 482

        Examples:

            .. code-block:: python
1
123malin 已提交
483

484 485 486 487
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

488
        """
489
        return self._role_maker._worker_index()
490 491 492 493 494 495 496

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
497

498
        Examples:
1
123malin 已提交
499

500 501 502 503 504 505
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

506
        """
507
        return self._role_maker._worker_num()
508

509 510 511 512 513 514 515 516 517 518 519 520
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

521 522 523 524 525 526 527
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
528 529

        Examples:
1
123malin 已提交
530

531 532 533 534 535 536
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

537
        """
538
        return self._role_maker._is_worker()
539

540 541 542
    def is_coordinator(self):
        return self._role_maker._is_coordinator()

543 544
    def worker_endpoints(self, to_string=False):
        """
545
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
546 547 548

        Returns:
            list/string: server endpoints
549 550

        Examples:
1
123malin 已提交
551

552 553 554 555 556 557
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

558 559
        """
        if to_string:
560
            return ",".join(self._role_maker._get_trainer_endpoints())
561
        else:
562
            return self._role_maker._get_trainer_endpoints()
563 564 565 566 567 568 569

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
570 571

        Examples:
1
123malin 已提交
572

573
            .. code-block:: python
1
123malin 已提交
574 575 576 577

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
578
        """
579
        return len(self._role_maker._get_pserver_endpoints())
580 581 582 583 584 585 586

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
587 588

        Examples:
1
123malin 已提交
589

590 591 592 593 594 595
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

596
        """
597
        return self._role_maker._server_index()
598 599 600 601 602 603 604

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
605 606

        Examples:
1
123malin 已提交
607

608 609 610 611 612 613
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

614
        """
615

616
        if to_string:
617
            return ",".join(self._role_maker._get_pserver_endpoints())
618
        else:
619
            return self._role_maker._get_pserver_endpoints()
620 621 622 623 624 625 626 627

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
628 629 630 631

        Examples:

            .. code-block:: python
1
123malin 已提交
632

633 634 635 636
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

637
        """
638 639
        return self._role_maker._is_server()

640 641
    def barrier_worker(self):
        """
642 643 644 645
        barrier all workers

        Returns:
            None
646
        """
647
        self._role_maker._barrier("worker")
648

649
    @is_non_distributed_check
650
    @inited_runtime_handler
651
    def init_worker(self, scopes=None):
652
        """
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

671
        """
672
        self._runtime_handle._init_worker(scopes)
673

674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    @is_non_distributed_check
    @inited_runtime_handler
    def init_coordinator(self, scopes=None):
        """
        initialize coordinator node
        """
        self._runtime_handle._init_coordinator(scopes)

    def make_fl_strategy(self):
        self._runtime_handle._make_fl_strategy()

    @is_non_distributed_check
    @inited_runtime_handler
    def get_fl_client(self):
        """
        get worker(training node) ptr
        """
        return self._runtime_handle._worker

693
    @is_non_distributed_check
694
    @inited_runtime_handler
695
    def init_server(self, *args, **kwargs):
696
        """
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

716
        """
717
        self._runtime_handle._init_server(*args, **kwargs)
718

Z
zmxdream 已提交
719 720
    @is_non_distributed_check
    @inited_runtime_handler
T
Thunderbrook 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

739
                fleet.load_model("path", mode=0)
T
Thunderbrook 已提交
740 741

        """
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
        self._runtime_handle._load_persistables(path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_one_table(self, table_id, path, mode):
        """
        load fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_one_table(0, "path", mode=0)

        """
        self._runtime_handle._load_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_inference_model(self, path, mode):
        """
        load fleet inference model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_inference_model("path", mode=1)

        """
        self._runtime_handle._load_inference_model(path, mode)
T
Thunderbrook 已提交
793

794
    @is_non_distributed_check
795
    @inited_runtime_handler
796 797
    def run_server(self):
        """
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

816 817 818
        """
        self._runtime_handle._run_server()

819
    @is_non_distributed_check
820
    @inited_runtime_handler
821 822
    def stop_worker(self):
        """
823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

840 841 842
        """
        self._runtime_handle._stop_worker()

Z
zmxdream 已提交
843 844
    @is_non_distributed_check
    @inited_runtime_handler
T
tangwei12 已提交
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

879 880 881
            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0
            )
T
tangwei12 已提交
882 883 884 885
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
886 887 888
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode
            )
T
tangwei12 已提交
889

Z
zmxdream 已提交
890 891
    @is_non_distributed_check
    @inited_runtime_handler
892 893 894 895 896 897 898 899 900 901
    def save_inference_model(
        self,
        executor,
        dirname,
        feeded_var_names,
        target_vars,
        main_program=None,
        export_for_deployment=True,
        mode=0,
    ):
902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

922 923 924 925 926 927 928 929 930
        self._runtime_handle._save_inference_model(
            executor,
            dirname,
            feeded_var_names,
            target_vars,
            main_program,
            export_for_deployment,
            mode,
        )
931

Z
zmxdream 已提交
932 933
    @is_non_distributed_check
    @inited_runtime_handler
934
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
935 936
        """

1
123malin 已提交
937
        saves all persistable tensors from :code:`main_program` to
938 939
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
940 941
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
942 943 944
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
945
            executor(Executor): The executor to run for saving persistable tensors.
946 947 948 949 950
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
951
            main_program(Program, optional): The program whose persistbale tensors will
952 953 954 955 956 957 958 959 960 961
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
962 963
                import paddle
                paddle.enable_static()
964 965 966 967 968 969 970
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
971 972
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
973 974

        """
975 976 977
        self._runtime_handle._save_persistables(
            executor, dirname, main_program, mode
        )
978

Z
zhaocaibei123 已提交
979 980 981 982 983
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_model(self, dirname, **configs):
        return self._runtime_handle._save_cache_model(dirname, **configs)

984 985 986 987 988
    @is_non_distributed_check
    @inited_runtime_handler
    def check_save_pre_patch_done(self):
        return self._runtime_handle._check_save_pre_patch_done()

L
lxsbupt 已提交
989 990 991 992 993 994 995 996 997
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_table(
        self, table_id, pass_id, mem_cache_key_threshold=4000000000
    ):
        return self._runtime_handle._save_cache_table(
            table_id, pass_id, mem_cache_key_threshold
        )

998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
    @is_non_distributed_check
    @inited_runtime_handler
    def save_one_table(self, table_id, path, mode):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_one_table(0, "path", mode=0)

        """
        self._runtime_handle._save_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
1025 1026 1027
    def save_dense_params(
        self, executor, dirname, scope, program, var_names=None
    ):
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                import paddle
1042 1043
                place = paddle.CPUPlace()
                exe =  paddle.static.Executor(place)
1044 1045 1046 1047 1048 1049 1050

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())

        """
1051 1052 1053
        self._runtime_handle._save_dense_params(
            executor, dirname, scope, program, var_names
        )
1054

L
lxsbupt 已提交
1055 1056
    @is_non_distributed_check
    @inited_runtime_handler
1057
    def shrink(self, threshold=None):
1058 1059
        self._runtime_handle._shrink(threshold)

1060
    def distributed_optimizer(self, optimizer, strategy=None):
1061
        """
1062 1063 1064 1065 1066 1067 1068
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
1069
            strategy(DistributedStrategy): Extra properties for distributed optimizer.
1070
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
1071 1072
                here is for compatibility. If the strategy in fleet.distributed_optimizer()
                is not None, then it will overwrite the DistributedStrategy in fleet.init(),
1073
                which will take effect in distributed training.
1074

1075
        Returns:
1076
            Fleet: instance of fleet.
1077 1078

        Examples:
1079

1080
            .. code-block:: python
1081

1
123malin 已提交
1082
                import paddle
1083
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1084
                fleet.init(is_collective=True)
1085 1086 1087 1088
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

1089 1090
        """
        self.user_defined_optimizer = optimizer
1091

1092
        if strategy is not None:
T
tangwei12 已提交
1093
            if self._is_collective:
R
Roc 已提交
1094
                logger.warning(
T
tangwei12 已提交
1095 1096 1097 1098
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
1099 1100
                    "which will take effect in distributed training."
                )
1101
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
1102 1103

        self._context = {}
S
ShenLiang 已提交
1104

1105 1106
        return self

1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

1119 1120 1121
        assert (
            amp_optimizer is not None
        ), "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
1122 1123 1124
        return amp_optimizer

    def get_loss_scaling(self):
1125
        """Return the real-time loss scaling factor."""
1126 1127 1128
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

1129 1130 1131
    def amp_init(
        self, place, scope=None, test_program=None, use_fp16_test=False
    ):
H
huangxu96 已提交
1132 1133
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
1134

H
huangxu96 已提交
1135
        Args:
1136
            place(CUDAPlace): place is used to initialize
H
huangxu96 已提交
1137 1138 1139 1140
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
1141

H
huangxu96 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
1162
                    # or the slow convergence in a way.
H
huangxu96 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
1182

H
huangxu96 已提交
1183
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
1184
                    run_example_code()
H
huangxu96 已提交
1185
        """
1186
        amp_optimizer = self._get_amp_optimizer()
1187
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1188

D
Dong Daxiang 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1216 1217 1218
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1219 1220 1221 1222
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1223
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1224 1225 1226
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1227
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1228 1229
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1230
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1231 1232 1233 1234
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1235
            by minimize and a list of (param, grad) tensor pairs, param is
1236
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1237 1238
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1239 1240 1241
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1242

1243
            .. code-block:: python
1244

1245
                import paddle
1
123malin 已提交
1246
                paddle.enable_static()
1247
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1259

1
123malin 已提交
1260
                fleet.init(is_collective=True)
1261 1262 1263 1264
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1265

1266
                # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX
1267 1268

        """
1269
        if not isinstance(loss, list):
1270 1271 1272
            return self._minimize_impl(
                loss, startup_program, parameter_list, no_grad_set
            )
1273
        else:
1274
            if (
1275
                in_dygraph_mode()
1276 1277 1278
                or self._role_maker._is_non_distributed()
                or self._is_collective
            ):
1279
                raise ValueError("loss can be list only in PS mode")
1280 1281 1282 1283 1284 1285 1286
            return self._minimize_losses_impl(
                loss, startup_program, parameter_list, no_grad_set
            )

    def _minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
D
Dong Daxiang 已提交
1287 1288
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
1289 1290
            self._user_defined_strategy
        )
1291
        if in_dygraph_mode():
1292 1293
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1294
            self._context = context
1295
            return target_opt.minimize(loss)
1296
        else:
1297 1298 1299 1300
            # cache original feed forward program
            self.origin_main_program = loss.block.program
            # add distributed attr
            if not hasattr(self.origin_main_program, "distributed_info_"):
1301
                self.origin_main_program.distributed_info_ = dict()
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
                self.origin_main_program.distributed_info_[
                    "dp_degree"
                ] = self._user_defined_strategy.sharding_configs["dp_degree"]
                self.origin_main_program.distributed_info_[
                    "mp_degree"
                ] = self._user_defined_strategy.sharding_configs["mp_degree"]
                self.origin_main_program.distributed_info_[
                    "pp_degree"
                ] = self._user_defined_strategy.sharding_configs["pp_degree"]
                self.origin_main_program.distributed_info_[
                    "sharding_degree"
                ] = self._user_defined_strategy.sharding_configs[
                    "sharding_degree"
                ]
1316

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
            context["origin_main_program"] = self.origin_main_program
            context["origin_main_programs"] = [self.origin_main_program]
            context["loss"] = loss
            if startup_program is None:
                self.origin_startup_program = (
                    paddle.static.default_startup_program().clone(
                        for_test=False
                    )
                )
                startup_program = paddle.static.default_startup_program()
            else:
                self.origin_startup_program = startup_program.clone(
                    for_test=False
                )
1331

1332 1333 1334
            context["origin_startup_program"] = startup_program
            context["origin_startup_programs"] = [startup_program]
            context["role_maker"] = self._role_maker
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
            # Use the auto-parallel's routines instead
            if (
                self._user_defined_strategy.semi_auto
                or self._user_defined_strategy.auto_search
            ):
                from ..auto_parallel.parallelizer import AutoParallelizer

                auto_parallelizer = AutoParallelizer(self)
                (
                    optimize_ops,
                    params_grads,
                    dist_startup_prog,
                    dist_main_prog,
                ) = auto_parallelizer.parallelize(
                    loss, startup_program, parameter_list, no_grad_set
                )
1352

1353 1354 1355 1356 1357 1358
                return (
                    optimize_ops,
                    params_grads,
                    dist_startup_prog,
                    dist_main_prog,
                )
L
lxsbupt 已提交
1359

1360 1361
            context["user_defined_strategy"] = copy.deepcopy(
                self._user_defined_strategy
L
lxsbupt 已提交
1362
            )
1363 1364
            copy_user_defined_strategy = copy.deepcopy(
                self._user_defined_strategy
1365
            )
L
lxsbupt 已提交
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
            can_not_apply_optimizer_list = []
            # fix set collective and fleet ps gpu error
            if (
                self._is_collective
                and len(self._user_defined_strategy.sparse_table_configs) > 0
            ):
                context["use_fleet_ps"] = True
                from .meta_optimizers import ParameterServerOptimizer

                meta_optimizer = ParameterServerOptimizer(
L
lxsbupt 已提交
1377 1378
                    self.user_defined_optimizer
                )
1379 1380 1381 1382 1383 1384 1385
                meta_optimizer._set_basic_info(
                    loss,
                    self._role_maker,
                    self.user_defined_optimizer,
                    copy_user_defined_strategy,
                )
                can_not_apply_optimizer_list.append(meta_optimizer)
1386 1387 1388 1389

                # meaningless, just for compatibility with other code
                graph_optimizer = None

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
            else:
                # compile time
                distributed_optimizer_list = (
                    MetaOptimizerFactory()._get_valid_meta_optimizers(
                        self.user_defined_optimizer
                    )
                )
                # trigger the auto-parallel in very strict condition
                # strategy = DistributedStrategy()
                # strategy.auto = True
                # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
                # optimizer = fleet.distributed_optimizer(optimizer, strategy)
                if copy_user_defined_strategy._is_strict_auto():
                    # turn on all the strategy for each optimizer
                    for opt in distributed_optimizer_list:
                        opt._enable_strategy(
                            copy_user_defined_strategy, context
                        )

                valid_optimizer_list = []
                valid_graph_optimizer_list = []
                # recall meta optimizers for ranking
                for opt in distributed_optimizer_list:
                    opt._set_basic_info(
                        loss,
                        self._role_maker,
                        self.user_defined_optimizer,
                        copy_user_defined_strategy,
                    )
                    if opt._can_apply() and not opt._is_graph_out():
                        valid_optimizer_list.append(opt)
                    elif opt._can_apply() and opt._is_graph_out():
                        valid_graph_optimizer_list.append(opt)
                    else:
                        can_not_apply_optimizer_list.append(opt)
                # combine recalled meta optimizers to be a valid meta optimizer
                (
                    meta_optimizer,
                    graph_optimizer,
                ) = self.strategy_compiler.generate_optimizer(
                    loss,
                    self._role_maker,
                    self.user_defined_optimizer,
                    copy_user_defined_strategy,
                    valid_optimizer_list,
                    valid_graph_optimizer_list,
                )

            valid_strategy = self.strategy_compiler._get_valid_strategy(
                copy_user_defined_strategy, can_not_apply_optimizer_list
L
lxsbupt 已提交
1440
            )
D
Dong Daxiang 已提交
1441

1442 1443 1444 1445 1446 1447
            context["valid_strategy"] = copy.deepcopy(valid_strategy)
            logger.debug("valid_strategy: " + str(context["valid_strategy"]))
            logger.debug(
                "user_defined_strategy: "
                + str(context["user_defined_strategy"])
            )
D
Dong Daxiang 已提交
1448

1449 1450 1451 1452
            applied_meta_list = self.strategy_compiler._get_applied_meta_list()
            applied_graph_list = (
                self.strategy_compiler._get_applied_graph_list()
            )
1453

1454 1455
            context['applied_meta_list'] = applied_meta_list
            context['applied_graph_list'] = applied_graph_list
1456

1457
            self._context = context
1458

1459 1460
            self.valid_strategy = valid_strategy
            self.valid_strategy._enable_env()
1461

1462 1463
            optimize_ops = []
            params_grads = []
D
Dong Daxiang 已提交
1464

1465 1466 1467 1468 1469 1470 1471 1472
            if (
                self._role_maker._is_non_distributed()
                and not self._is_collective
            ):
                if self._runtime_handle is None:
                    self._runtime_handle = RuntimeFactory()._create_runtime(
                        context
                    )
1473

1474 1475
                compiled_program = compiler.CompiledProgram(
                    self.origin_main_program
1476
                )
1477 1478 1479 1480 1481 1482 1483
                loss.block.program._graph = compiled_program
                return self.user_defined_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
1484

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
            if meta_optimizer:
                logger.debug(
                    "before minimize program id: " + str(id(loss.block.program))
                )
                optimize_ops, params_grads = meta_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
                logger.debug(
                    "after minimize program id: " + str(id(loss.block.program))
                )
                default_program = paddle.static.default_main_program()
                logger.debug("default program id: " + str(id(default_program)))

                if id(default_program) != id(loss.block.program):
                    paddle.framework.switch_main_program(loss.block.program)
                logger.debug(
                    "default program id after switch: "
                    + str(id(default_program))
                )
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
            else:
                (
                    optimize_ops,
                    params_grads,
                ) = self.user_defined_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
1518

1519 1520
            context["program_optimize_ops"] = optimize_ops
            context["program_params_grads"] = params_grads
1521

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
            if graph_optimizer:
                logger.debug(
                    "before graph minimize program id: "
                    + str(id(loss.block.program))
                )
                optimize_ops, params_grads = graph_optimizer.minimize(
                    loss,
                    startup_program,
                    parameter_list,
                    no_grad_set=no_grad_set,
                )
                # since we do not encourage users to use graph operations
                # if a graph optimizer takes effect, mostly
                # optimizers_ops and params_grads are None
                # i.e. users can not modify current computation graph anymore
                context["graph_optimize_ops"] = optimize_ops
                context["graph_optimize_grads"] = params_grads
            else:
                apply_ir_passes(loss.block.program, startup_program, self)
1541

1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
            if not self._role_maker._is_heter_parameter_server_mode:
                program = paddle.static.default_main_program()
                opt_info = (
                    {} if program._fleet_opt is None else program._fleet_opt
                )
                opt_info["mpi_size"] = self.worker_num()
                opt_info["mpi_rank"] = self.worker_index()
                for (
                    k,
                    v,
                ) in self._user_defined_strategy.trainer_desc_configs.items():
                    if v or k not in opt_info:
                        opt_info[k] = v
                program._fleet_opt = opt_info
1556

1557 1558
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)
1559

1560
            import paddle.distributed.fleet as fleet
1561

1562
            fleet.util._set_strategy(context["valid_strategy"])
1563

1564
            return optimize_ops, params_grads
1565

1566 1567 1568 1569 1570 1571 1572
    def _minimize_losses_impl(
        self,
        losses,
        startup_programs=None,
        parameter_list=None,
        no_grad_set=None,
    ):
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
        context = {}

        # cache original feed forward program
        self.origin_main_program = losses[0].block.program
        context["origin_main_program"] = self.origin_main_program
        context["origin_main_programs"] = []
        for loss in losses:
            context["origin_main_programs"].append(loss.block.program)
        context["loss"] = losses

        if startup_programs is None:
            if len(losses) == 1:
                startup_programs = [paddle.static.default_startup_program()]
            else:
                raise ValueError(
1588 1589
                    "startup_program can't be None when loss is list."
                )
1590 1591 1592 1593 1594 1595 1596 1597 1598
        self.origin_startup_program = startup_programs[0].clone(for_test=False)
        context["origin_startup_program"] = startup_programs[0]
        context["origin_startup_programs"] = []
        for program in startup_programs:
            context["origin_startup_programs"].append(program)

        context["role_maker"] = self._role_maker

        context["user_defined_strategy"] = copy.deepcopy(
1599 1600
            self._user_defined_strategy
        )
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611

        context["valid_strategy"] = copy.deepcopy(self._user_defined_strategy)

        self._context = context

        self.valid_strategy = context["valid_strategy"]
        self.valid_strategy._enable_env()

        optimize_ops = []
        params_grads = []

W
wuhuachaocoding 已提交
1612
        from .meta_optimizers import ParameterServerOptimizer
1613

1614
        ps_optimizer = ParameterServerOptimizer(self.user_defined_optimizer)
1615 1616 1617 1618 1619 1620
        ps_optimizer._set_basic_info(
            losses,
            self._role_maker,
            self.user_defined_optimizer,
            self._user_defined_strategy,
        )
1621
        optimize_ops, params_grads = ps_optimizer.minimize_losses_impl(
1622 1623
            losses, startup_programs, parameter_list, no_grad_set=no_grad_set
        )
1624 1625 1626 1627

        # default_program = paddle.static.default_main_program()

        # if id(default_program) != id(losses[0].block.program):
1628
        #     paddle.framework.switch_main_program(losses[0].block.program)
1629 1630 1631 1632 1633 1634 1635

        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads

        for loss in losses:
            program = loss.block.program
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
1636 1637
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
1638 1639 1640 1641
            for (
                k,
                v,
            ) in self._user_defined_strategy.trainer_desc_configs.items():
1642
                if v or k not in opt_info:
1643
                    opt_info[k] = v
1644
            program._fleet_opt = opt_info
1645 1646 1647 1648 1649
            logger.debug(
                "fleet base opt info: "
                + str(id(program))
                + str(program._fleet_opt)
            )
1650

1651
        if self._runtime_handle is None:
1652
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1653

1654
        import paddle.distributed.fleet as fleet
1655

1656
        fleet.util._set_strategy(context["valid_strategy"])
1657 1658

        return optimize_ops, params_grads