fleet.py 51.6 KB
Newer Older
W
wuhuachaocoding 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
16
import os
17 18

import paddle
19
from paddle.fluid import compiler
20
from paddle.fluid.dygraph import parallel_helper
21
from paddle.fluid.ir import apply_build_strategy
22 23 24
from paddle.fluid.wrapped_decorator import wrap_decorator
from paddle.framework import _global_flags

W
wuhuachaocoding 已提交
25
from .base import topology as tp
26 27 28 29 30
from .base.distributed_strategy import DistributedStrategy
from .base.meta_optimizer_factory import MetaOptimizerFactory
from .base.role_maker import PaddleCloudRoleMaker, RoleMakerBase
from .base.runtime_factory import RuntimeFactory
from .base.strategy_compiler import StrategyCompiler
W
wuhuachaocoding 已提交
31
from .meta_parallel import model_parallel_random_seed
R
Roc 已提交
32
from .utils.log_util import logger, set_log_level
33

34 35
__all__ = []

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50
def apply_ir_passes(main_program, startup_program, config):
    build_strategy = config._user_defined_strategy.build_strategy._copy()
    if not _global_flags()['FLAGS_apply_pass_to_program']:
        return build_strategy

    pipeline_opt = getattr(main_program, "_pipeline_opt", {})
    if pipeline_opt:
        main_program = pipeline_opt["section_program"]
        startup_program = startup_program._pipeline_opt["startup_program"]

    pass_attrs = {"use_cuda": config._is_collective}
    fuse_all_reduce = config._user_defined_strategy.fuse_all_reduce_ops
    if fuse_all_reduce and build_strategy.fuse_all_optimizer_ops:
        # FIXME(zjl): currently, fuse_all_optimizer_ops
51 52 53 54
        # have conflict with fuse_all_reduce_ops because
        # RawProgramOptimizer also inserts coalesce_tensor
        # into program. These two procedures may conflict
        # in which vars are to be fused.
R
Roc 已提交
55
        logger.warning(
56 57 58 59
            'Currently, the fuse_all_optimizer_ops pass has conflict with fuse_all_reduce_ops pass. Disable the fuse_all_optimizer_ops pass temporarily.'
        )
        build_strategy.fuse_all_optimizer_ops = False

60 61 62
    return apply_build_strategy(
        main_program, startup_program, build_strategy, pass_attrs
    )
63 64


65 66 67 68 69 70 71 72 73 74 75 76
def _inited_runtime_handler_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

        if cls._runtime_handle is None:
            raise ValueError("Fleet can not find suitable runtime handler")

        return func(*args, **kwargs)

    return __impl__


77 78 79 80
def _is_non_distributed_check_(func):
    def __impl__(*args, **kwargs):
        cls = args[0]

81 82 83 84
        if (
            cls._role_maker is not None
            and cls._role_maker._is_non_distributed() is True
        ):
R
Roc 已提交
85
            logger.warning(
86 87 88
                "%s() function doesn't work when use non_distributed fleet."
                % (func.__name__)
            )
89 90 91 92 93 94 95
            return

        return func(*args, **kwargs)

    return __impl__


96
inited_runtime_handler = wrap_decorator(_inited_runtime_handler_)
97
is_non_distributed_check = wrap_decorator(_is_non_distributed_check_)
98 99


100
class Fleet:
101 102
    """
    Unified API for distributed training of PaddlePaddle
103
    Please reference the https://github.com/PaddlePaddle/PaddleFleetX for details
104 105 106 107 108


    Returns:
        Fleet: A Fleet instance

109
    Example for collective training:
1
123malin 已提交
110

111 112
        .. code-block:: python

1
123malin 已提交
113 114
            import paddle
            paddle.enable_static()
115
            import paddle.distributed.fleet as fleet
116 117 118

            fleet.init(is_collective=True)

119 120 121
            strategy = fleet.DistributedStrategy()
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
            optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
122 123 124 125 126 127 128 129

            # do distributed training


    Example for parameter server training:

        .. code-block:: python

1
123malin 已提交
130 131
            import paddle
            paddle.enable_static()
132 133
            import paddle.distributed.fleet as fleet
            strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
134
            fleet.init(strategy=strategy)
135

136
            optimizer = paddle.optimizer.SGD(learning_rate=0.001)
137
            optimizer = fleet.distributed_optimizer(optimizer)
138

139 140
            if fleet.is_first_worker():
                print("this is first worker")
141

142 143
            print("current node index: {}".format(fleet.worker_index()))
            print("total number of worker num: {}".format(fleet.worker_num()))
144

145 146 147
            if fleet.is_worker():
                print("this is worker")
            print("worker endpoints: {}".format(fleet.worker_endpoints(to_string=True)))
148

149 150
            print("server num: {}".format(fleet.server_num()))
            print("server endpoints: {}".format(fleet.server_endpoints(to_string=True)))
151

152 153 154
            if fleet.is_server():
                print("this is server")
            fleet.stop_worker()
155 156


157 158 159
    """

    def __init__(self):
160
        self._role_maker = None
161
        self.strategy_compiler = None
162
        self._is_collective = False
163
        self._runtime_handle = None
D
Dong Daxiang 已提交
164 165
        self._util = None
        self._context = {}
W
wuhuachaocoding 已提交
166
        self.user_defined_optimizer = paddle.optimizer.Optimizer(0.0)
167

168 169 170 171 172 173 174
    def init(
        self,
        role_maker=None,
        is_collective=False,
        strategy=None,
        log_level="INFO",
    ):
175 176 177
        """
        Initialize role_maker in Fleet.

178 179 180 181 182
        This function is responsible for the distributed architecture
        what you want to run your code behind.

        Args:
            role_maker (RoleMakerBase, optional): A ``RoleMakerBase`` containing the configuration
183
                of environment variables related to distributed training.If you did not initialize
184 185
                the rolemaker by yourself, it will be automatically initialized to PaddleRoleMaker.
                The default value is None.
186
            is_collective (Boolean, optional): A ``Boolean`` variable determines whether the program
187
                runs on Collective mode or ParameterServer mode. True means the program runs on
188
                Collective mode, and False means running on ParameterServer mode. The default value
189
                is False.
190
            strategy (DistributedStrategy): Extra properties for distributed training.
191
                For details, please refer to paddle.distributed.fleet.DistributedStrategy. Default: None.
R
Roc 已提交
192 193
            log_level (Integer, String, optional): A ``Integer`` or ``String`` Variable determining how hight
                the logging level is. Default is "INFO".
194 195


196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
        Returns:
            None

        Examples1:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

        Examples2:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init(is_collective=True)

        Examples3:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
1
123malin 已提交
218
                role = fleet.PaddleCloudRoleMaker()
219
                fleet.init(role)
220

221 222 223 224 225 226
        Examples4:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
S
ShenLiang 已提交
227
                fleet.init(strategy=strategy)
228

R
Roc 已提交
229 230 231 232 233 234 235 236
        Examples5:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                strategy = fleet.DistributedStrategy()
                fleet.init(log_level = "DEBUG")

237
        """
R
Roc 已提交
238 239 240

        set_log_level(log_level)

S
ShenLiang 已提交
241 242 243
        if strategy is None:
            strategy = DistributedStrategy()
        self._user_defined_strategy = copy.deepcopy(strategy)
244 245

        if role_maker is None:
246 247 248
            if isinstance(is_collective, bool):
                self._is_collective = is_collective
                self._role_maker = PaddleCloudRoleMaker(
249 250
                    is_collective=self._is_collective
                )
251 252
            else:
                raise ValueError(
253 254 255 256
                    "`is_collective` should be instance of `bool`, but got {}".format(
                        type(is_collective)
                    )
                )
257
        else:
258 259
            if isinstance(role_maker, RoleMakerBase):
                self._role_maker = role_maker
260
                self._is_collective = role_maker._is_collective
261 262
            else:
                raise ValueError(
263 264 265 266
                    "`role_maker` should be subclass of `RoleMakerBase`, but got {}".format(
                        type(role_maker)
                    )
                )
267
        self._role_maker._generate_role()
268

269
        import paddle.distributed.fleet as fleet
270

271 272
        fleet.util._set_role_maker(self._role_maker)

273
        self.strategy_compiler = StrategyCompiler()
274 275

        if self._role_maker._is_non_distributed() and self._is_collective:
276 277
            if paddle.framework.core.is_compiled_with_cuda():
                gpus_num = paddle.framework.core.get_cuda_device_count()
278 279 280 281 282
                if gpus_num != 1:
                    raise ValueError(
                        "CUDA_VISIBLE_DEVICES shoule be set only 1 card if you use `python` to launch fleet program."
                    )

283
        if paddle.framework._non_static_mode():
284
            if self.worker_num() == 1:
285 286 287
                # if worker_num is 1, should construct default topology & hcg
                self._topology = tp.CommunicateTopology()
                self._hcg = tp.HybridCommunicateGroup(self._topology)
288
                return
289
            if parallel_helper._is_parallel_ctx_initialized():
R
Roc 已提交
290
                logger.warning(
291 292
                    "The dygraph parallel environment has been initialized."
                )
293
            else:
294 295
                # FLAGS_nccl_nrings is used for dynamic graph multi-stream communication
                if "FLAGS_nccl_nrings" in os.environ:
R
Roc 已提交
296
                    logger.warning(
297 298
                        "You have set the environment variable FLAGS_nccl_nrings "
                        "outside the program, so the nccl_comm_num in "
299 300
                        "DistributedStrategy will not take effect here."
                    )
301 302
                else:
                    os.environ["FLAGS_nccl_nrings"] = str(
303 304
                        self._user_defined_strategy.nccl_comm_num
                    )
305
                paddle.distributed.init_parallel_env()
306

K
kuizhiqing 已提交
307
            # hybrid parallel not support for npu/xpu
308
            if not self._user_defined_strategy.heter_ccl_mode:
K
kuizhiqing 已提交
309 310 311 312
                # init hybrid parallel environment in dygraph
                if tp._HYBRID_PARALLEL_GROUP is None:
                    self._init_hybrid_parallel_env()
                else:
R
Roc 已提交
313
                    logger.warning(
K
kuizhiqing 已提交
314 315
                        "The dygraph hybrid parallel environment has been initialized."
                    )
W
WangXi 已提交
316 317 318 319 320 321 322 323 324 325
        elif self._is_collective:
            use_sharding = self._user_defined_strategy.sharding

            # global group
            global_rank = self.worker_index()
            global_world_size = self.worker_num()
            # NOTE(wangxi): see sharding_optimizer
            global_ring_id = 3 if use_sharding else 0
            global_ranks = list(range(global_world_size))

326 327
            if tp._HYBRID_PARALLEL_GROUP is None:
                tp._CommunicateGroup()
W
WangXi 已提交
328 329
            cg = tp._HYBRID_PARALLEL_GROUP
            self._hcg = cg
330 331 332 333 334 335 336
            cg.set_comm_group(
                'global',
                global_rank,
                global_world_size,
                global_ring_id,
                global_ranks,
            )
W
WangXi 已提交
337

Y
Yuang Liu 已提交
338 339 340
            use_tensor_parallel = self._user_defined_strategy.tensor_parallel
            use_mp = use_sharding or use_tensor_parallel

W
WangXi 已提交
341
            # hybrid group
342 343
            if use_mp is False:
                return
Y
Yuang Liu 已提交
344 345 346 347 348 349 350 351

            mp_degree_sharding = 1
            mp_degree_tensor_parallel = 1
            if use_sharding:
                sharding_configs = self._user_defined_strategy.sharding_configs
                mp_degree_sharding = int(sharding_configs['mp_degree'])

            if use_tensor_parallel:
352 353 354
                tensor_parallel_configs = (
                    self._user_defined_strategy.tensor_parallel_configs
                )
355
                mp_degree_tensor_parallel = int(
356 357
                    tensor_parallel_configs['tensor_parallel_degree']
                )
Y
Yuang Liu 已提交
358 359 360

            if use_sharding and use_tensor_parallel:
                assert mp_degree_sharding == mp_degree_tensor_parallel
W
WangXi 已提交
361

362 363 364 365 366
            mp_degree = (
                mp_degree_sharding
                if use_sharding
                else mp_degree_tensor_parallel
            )
W
WangXi 已提交
367 368 369 370 371 372 373 374

            if mp_degree > 1:
                assert global_world_size % mp_degree == 0
                # NOTE(wangxi): mp_ring_id sync with sharding_optimizer.py _build_groups
                mp_ring_id = 0
                mp_rank = global_rank % mp_degree
                mp_group_id = global_rank // mp_degree
                mp_group_ranks = [
375 376
                    idx
                    for idx in global_ranks
W
WangXi 已提交
377 378
                    if idx // mp_degree == mp_group_id
                ]
379 380 381
                cg.set_comm_group(
                    'model', mp_rank, mp_degree, mp_ring_id, mp_group_ranks
                )
W
wuhuachaocoding 已提交
382
        return self
383 384

    def _init_hybrid_parallel_env(self):
385
        """initialize the hybrid environment"""
386 387 388 389
        self.hybrid_configs = self._user_defined_strategy.hybrid_configs
        self.dp_degree = self.hybrid_configs["dp_degree"]
        self.mp_degree = self.hybrid_configs["mp_degree"]
        self.pp_degree = self.hybrid_configs["pp_degree"]
J
JZ-LIANG 已提交
390
        self.sharding_degree = self.hybrid_configs["sharding_degree"]
391 392 393

        assert self.mp_degree >= 0, "mp_degree should be greater or equal to 0"
        assert self.pp_degree >= 0, "pp_degree should be greater or equal to 0"
394 395 396
        assert (
            self.sharding_degree >= 0
        ), "sharding_degree should be greater or equal to 0"
397 398 399 400 401 402 403 404 405 406 407

        self.mp_degree = max(self.mp_degree, 1)
        self.pp_degree = max(self.pp_degree, 1)

        if self.dp_degree < 0:
            nranks = paddle.distributed.get_world_size()
            self.dp_degree = nranks // (self.mp_degree * self.pp_degree)

        self.dp_degree = max(self.dp_degree, 1)

        self._topology = tp.CommunicateTopology(
J
JZ-LIANG 已提交
408 409
            hybrid_group_names=["data", "pipe", "sharding", "model"],
            dims=[
410 411 412 413 414 415
                self.dp_degree,
                self.pp_degree,
                self.sharding_degree,
                self.mp_degree,
            ],
        )
416 417 418

        self._hcg = tp.HybridCommunicateGroup(self._topology)

419
        if self.mp_degree > 1:
420 421 422
            tensor_parallel_configs = (
                self._user_defined_strategy.tensor_parallel_configs
            )
423 424 425 426 427 428
            tensor_init_seed = tensor_parallel_configs["tensor_init_seed"]
            if tensor_init_seed == -1:
                model_parallel_random_seed()
            else:
                model_parallel_random_seed(tensor_init_seed)

429 430 431 432 433 434 435 436
    def get_hybrid_communicate_group(self):
        assert self._hcg is not None
        return self._hcg

    def get_hybrid_parallel_topology(self):
        assert self._topology is not None
        return self._topology

437 438 439 440 441 442 443
    def is_first_worker(self):
        """
        Check whether the node is the first instance of worker.

        Returns:
            bool: True if this is the first node of worker,
                  False if not.
444

445 446 447 448 449 450 451 452
        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_first_worker()

453
        """
454
        return self._role_maker._is_first_worker()
455 456 457 458 459 460 461

    def worker_index(self):
        """
        Get current worker index.

        Returns:
            int: node id
462 463 464 465

        Examples:

            .. code-block:: python
1
123malin 已提交
466

467 468 469 470
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_index()

471
        """
472
        return self._role_maker._worker_index()
473 474 475 476 477 478 479

    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker numbers
1
123malin 已提交
480

481
        Examples:
1
123malin 已提交
482

483 484 485 486 487 488
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_num()

489
        """
490
        return self._role_maker._worker_num()
491

492 493 494 495 496 497 498 499 500 501 502 503
    def node_num(self):
        return self._role_maker._get_node_num()

    def local_rank(self):
        return self._role_maker._get_local_rank()

    def local_device_ids(self):
        return self._role_maker._get_local_device_ids()

    def world_device_ids(self):
        return self._role_maker._get_world_device_ids()

504 505 506 507 508 509 510
    def is_worker(self):
        """
        Check whether the node is an instance of worker.

        Returns:
            bool: True if this is a node of worker,
                  False if not.
511 512

        Examples:
1
123malin 已提交
513

514 515 516 517 518 519
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_worker()

520
        """
521
        return self._role_maker._is_worker()
522

523 524 525
    def is_coordinator(self):
        return self._role_maker._is_coordinator()

526 527
    def worker_endpoints(self, to_string=False):
        """
528
        Get current worker endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].
529 530 531

        Returns:
            list/string: server endpoints
532 533

        Examples:
1
123malin 已提交
534

535 536 537 538 539 540
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.worker_endpoints()

541 542
        """
        if to_string:
543
            return ",".join(self._role_maker._get_trainer_endpoints())
544
        else:
545
            return self._role_maker._get_trainer_endpoints()
546 547 548 549 550 551 552

    def server_num(self):
        """
        Get current total worker number.

        Returns:
            int: server number
553 554

        Examples:
1
123malin 已提交
555

556
            .. code-block:: python
1
123malin 已提交
557 558 559 560

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_num()
561
        """
562
        return len(self._role_maker._get_pserver_endpoints())
563 564 565 566 567 568 569

    def server_index(self):
        """
        Get current server index.

        Returns:
            int: node id
570 571

        Examples:
1
123malin 已提交
572

573 574 575 576 577 578
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_index()

579
        """
580
        return self._role_maker._server_index()
581 582 583 584 585 586 587

    def server_endpoints(self, to_string=False):
        """
        Get current server endpoints, such as ["127.0.0.1:1001", "127.0.0.1:1002"].

        Returns:
            list/string: server endpoints
588 589

        Examples:
1
123malin 已提交
590

591 592 593 594 595 596
            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.server_endpoints()

597
        """
598

599
        if to_string:
600
            return ",".join(self._role_maker._get_pserver_endpoints())
601
        else:
602
            return self._role_maker._get_pserver_endpoints()
603 604 605 606 607 608 609 610

    def is_server(self):
        """
        Check whether the node is an instance of server.

        Returns:
            bool: True if this is a node of server,
                  False if not.
611 612 613 614

        Examples:

            .. code-block:: python
1
123malin 已提交
615

616 617 618 619
                import paddle.distributed.fleet as fleet
                fleet.init()
                fleet.is_server()

620
        """
621 622
        return self._role_maker._is_server()

623 624
    def barrier_worker(self):
        """
625 626 627 628
        barrier all workers

        Returns:
            None
629
        """
630
        self._role_maker._barrier("worker")
631

632
    @is_non_distributed_check
633
    @inited_runtime_handler
634
    def init_worker(self, scopes=None):
635
        """
636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
        initialize `Communicator` for parameter server training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_worker()

654
        """
655
        self._runtime_handle._init_worker(scopes)
656

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    @is_non_distributed_check
    @inited_runtime_handler
    def init_coordinator(self, scopes=None):
        """
        initialize coordinator node
        """
        self._runtime_handle._init_coordinator(scopes)

    def make_fl_strategy(self):
        self._runtime_handle._make_fl_strategy()

    @is_non_distributed_check
    @inited_runtime_handler
    def get_fl_client(self):
        """
        get worker(training node) ptr
        """
        return self._runtime_handle._worker

676
    @is_non_distributed_check
677
    @inited_runtime_handler
678
    def init_server(self, *args, **kwargs):
679
        """
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        init_server executor to initialize startup program,
        if the `args` is not empty, it will run load_persistables for increment training.


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

699
        """
700
        self._runtime_handle._init_server(*args, **kwargs)
701

Z
zmxdream 已提交
702 703
    @is_non_distributed_check
    @inited_runtime_handler
T
Thunderbrook 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
    def load_model(self, path, mode):
        """
        load fleet model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

722
                fleet.load_model("path", mode=0)
T
Thunderbrook 已提交
723 724

        """
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        self._runtime_handle._load_persistables(path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_one_table(self, table_id, path, mode):
        """
        load fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_one_table(0, "path", mode=0)

        """
        self._runtime_handle._load_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
    def load_inference_model(self, path, mode):
        """
        load fleet inference model from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.load_inference_model("path", mode=1)

        """
        self._runtime_handle._load_inference_model(path, mode)
T
Thunderbrook 已提交
776

777
    @is_non_distributed_check
778
    @inited_runtime_handler
779 780
    def run_server(self):
        """
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        run server will run pserver main program with executor.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                if fleet.is_server():
                    fleet.init_server()

799 800 801
        """
        self._runtime_handle._run_server()

802
    @is_non_distributed_check
803
    @inited_runtime_handler
804 805
    def stop_worker(self):
        """
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        stop `Communicator` and give training complete notice to parameter server.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

823 824 825
        """
        self._runtime_handle._stop_worker()

Z
zmxdream 已提交
826 827
    @is_non_distributed_check
    @inited_runtime_handler
T
tangwei12 已提交
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    def save(self, dirname, feed=[], fetch=[], **configs):
        inference = True

        if not feed and not fetch:
            inference = False

        place = paddle.CPUPlace()
        executor = paddle.static.Executor(place)

        if inference:
            feeded_var_names = []
            fetch_var_names = []

            for var in feed:
                if isinstance(var, str):
                    feeded_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    feeded_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            for var in fetch:
                if isinstance(var, str):
                    fetch_var_names.append(var)
                elif isinstance(var, paddle.static.Variable):
                    fetch_var_names.append(var.name)
                else:
                    raise ValueError("feed must be [str|Variable]")

            fetch_vars = [
                paddle.static.default_main_program().global_block().var(name)
                for name in fetch_var_names
            ]

862 863 864
            self._runtime_handle._save_inference_model(
                executor, dirname, feeded_var_names, fetch_vars, None, True, 0
            )
T
tangwei12 已提交
865 866 867 868
        else:
            increment_mode = 0
            if "mode" in configs:
                increment_mode = int(configs["mode"])
869 870 871
            self._runtime_handle._save_persistables(
                executor, dirname, main_program=None, mode=increment_mode
            )
T
tangwei12 已提交
872

Z
zmxdream 已提交
873 874
    @is_non_distributed_check
    @inited_runtime_handler
875 876 877 878 879 880 881 882 883 884
    def save_inference_model(
        self,
        executor,
        dirname,
        feeded_var_names,
        target_vars,
        main_program=None,
        export_for_deployment=True,
        mode=0,
    ):
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
        """
        save inference model for inference.

        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.init_server()

        """

905 906 907 908 909 910 911 912 913
        self._runtime_handle._save_inference_model(
            executor,
            dirname,
            feeded_var_names,
            target_vars,
            main_program,
            export_for_deployment,
            mode,
        )
914

Z
zmxdream 已提交
915 916
    @is_non_distributed_check
    @inited_runtime_handler
917
    def save_persistables(self, executor, dirname, main_program=None, mode=0):
918 919
        """

1
123malin 已提交
920
        saves all persistable tensors from :code:`main_program` to
921 922
        the folder :code:`dirname`. You can refer to

1
123malin 已提交
923 924
        The :code:`dirname` is used to specify the folder where persistable tensors
        are going to be saved. If you would like to save tensors in separate
925 926 927
        files, set :code:`filename` None.

        Args:
1
123malin 已提交
928
            executor(Executor): The executor to run for saving persistable tensors.
929 930 931 932 933
                                You can refer to :ref:`api_guide_executor_en` for
                                more details.

            dirname(str, optional): The saving directory path.
                                When you need to save the parameter to the memory, set it to None.
1
123malin 已提交
934
            main_program(Program, optional): The program whose persistbale tensors will
935 936 937 938 939 940 941 942 943 944
                                             be saved. Default: None.


        Returns:
            None

        Examples:

            .. code-block:: text

1
123malin 已提交
945 946
                import paddle
                paddle.enable_static()
947 948 949 950 951 952 953
                import paddle.distributed.fleet as fleet

                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

1
123malin 已提交
954 955
                exe = paddle.static.Executor(paddle.CPUPlace())
                fleet.save_persistables(exe, "dirname", paddle.static.default_main_program())
956 957

        """
958 959 960
        self._runtime_handle._save_persistables(
            executor, dirname, main_program, mode
        )
961

Z
zhaocaibei123 已提交
962 963 964 965 966
    @is_non_distributed_check
    @inited_runtime_handler
    def save_cache_model(self, dirname, **configs):
        return self._runtime_handle._save_cache_model(dirname, **configs)

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
    @is_non_distributed_check
    @inited_runtime_handler
    def check_save_pre_patch_done(self):
        return self._runtime_handle._check_save_pre_patch_done()

    @is_non_distributed_check
    @inited_runtime_handler
    def save_one_table(self, table_id, path, mode):
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_one_table(0, "path", mode=0)

        """
        self._runtime_handle._save_one_table(table_id, path, mode)

    @is_non_distributed_check
    @inited_runtime_handler
999 1000 1001
    def save_dense_params(
        self, executor, dirname, scope, program, var_names=None
    ):
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
        """
        save fleet one table from path


        Returns:
            None

        Examples:

            .. code-block:: python

                import paddle.distributed.fleet as fleet
                fleet.init()
                import paddle
1016 1017
                place = paddle.CPUPlace()
                exe =  paddle.static.Executor(place)
1018 1019 1020 1021 1022 1023 1024

                # build net
                # fleet.distributed_optimizer(...)

                fleet.save_dense_params(exe, "path", scope=paddle.static.global_scope(), program=paddle.static.default_main_program())

        """
1025 1026 1027
        self._runtime_handle._save_dense_params(
            executor, dirname, scope, program, var_names
        )
1028

1029
    def shrink(self, threshold=None):
1030 1031
        self._runtime_handle._shrink(threshold)

1032
    def distributed_optimizer(self, optimizer, strategy=None):
1033
        """
1034 1035 1036 1037 1038 1039 1040
        Optimizer for distributed training.

        For the distributed training, this method would rebuild a new instance of DistributedOptimizer.
        Which has basic Optimizer function and special features for distributed training.

        Args:
            optimizer(Optimizer): The executor to run for init server.
1041
            strategy(DistributedStrategy): Extra properties for distributed optimizer.
1042
                It is recommended to use DistributedStrategy in fleet.init(). The strategy
1043 1044
                here is for compatibility. If the strategy in fleet.distributed_optimizer()
                is not None, then it will overwrite the DistributedStrategy in fleet.init(),
1045
                which will take effect in distributed training.
1046

1047
        Returns:
1048
            Fleet: instance of fleet.
1049 1050

        Examples:
1051

1052
            .. code-block:: python
1053

1
123malin 已提交
1054
                import paddle
1055
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1056
                fleet.init(is_collective=True)
1057 1058 1059 1060
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)

1061 1062
        """
        self.user_defined_optimizer = optimizer
1063

1064
        if strategy is not None:
T
tangwei12 已提交
1065
            if self._is_collective:
R
Roc 已提交
1066
                logger.warning(
T
tangwei12 已提交
1067 1068 1069 1070
                    "It is recommended to use DistributedStrategy "
                    "in fleet.init(). The strategy here is only for compatibility. "
                    "If the strategy in fleet.distributed_optimizer() is "
                    "not None, then it will overwrite the DistributedStrategy in fleet.init(), "
1071 1072
                    "which will take effect in distributed training."
                )
1073
            self._user_defined_strategy = copy.deepcopy(strategy)
D
Dong Daxiang 已提交
1074 1075

        self._context = {}
S
ShenLiang 已提交
1076

1077 1078
        return self

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    def _get_amp_optimizer(self):
        # imitate target optimizer retrieval
        amp_optimizer = None
        for optimizer in self.strategy_compiler._get_applied_meta_optimizer():
            if hasattr(optimizer, 'amp_init'):
                amp_optimizer = optimizer
                break

        if amp_optimizer is None:
            if hasattr(self.user_defined_optimizer, 'amp_init'):
                amp_optimizer = self.user_defined_optimizer

1091 1092 1093
        assert (
            amp_optimizer is not None
        ), "amp_init can only be used when the amp(auto mixed precision) strategy is turned on."
1094 1095 1096
        return amp_optimizer

    def get_loss_scaling(self):
1097
        """Return the real-time loss scaling factor."""
1098 1099 1100
        amp_optimizer = self._get_amp_optimizer()
        return amp_optimizer.get_loss_scaling()

1101 1102 1103
    def amp_init(
        self, place, scope=None, test_program=None, use_fp16_test=False
    ):
H
huangxu96 已提交
1104 1105
        """
        Init the amp training, such as cast fp32 parameters to fp16 type.
1106

H
huangxu96 已提交
1107
        Args:
1108
            place(CUDAPlace): place is used to initialize
H
huangxu96 已提交
1109 1110 1111 1112
                fp16 parameters with fp32 values.
            scope(Scope): The scope is used to find fp32 parameters.
            test_program(Program): The program is used for testing.
            use_fp16_test(bool): Whether to use fp16 testing.
1113

H
huangxu96 已提交
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn.functional as F
                paddle.enable_static()

                def run_example_code():
                    place = paddle.CUDAPlace(0)
                    exe = paddle.static.Executor(place)
                    data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
                    conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)
                    # 1) Use fp16_guard to control the range of fp16 kernels used.
                    with paddle.static.amp.fp16_guard():
                        bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                        pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                        hidden = paddle.static.nn.fc(pool, size=10)
                        loss = paddle.mean(hidden)
                    # 2) Create the optimizer and set `multi_precision` to True.
                    # Setting `multi_precision` to True can avoid the poor accuracy
1134
                    # or the slow convergence in a way.
H
huangxu96 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
                    optimizer = paddle.optimizer.Momentum(learning_rate=0.01, multi_precision=True)
                    # 3) These ops in `custom_black_list` will keep in the float32 computation type.
                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_black_list=['pool2d'])
                    # 4) The entry of Paddle AMP.
                    # Enable pure fp16 training by setting `use_pure_fp16` to True.
                    optimizer = paddle.static.amp.decorate(
                        optimizer,
                        amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        use_pure_fp16=True)
                    # If you don't use the default_startup_program(), you sholud pass
                    # your defined `startup_program` into `minimize`.
                    optimizer.minimize(loss)
                    exe.run(paddle.static.default_startup_program())
                    # 5) Use `amp_init` after FP32 parameters initialization(such as `exe.run(startup_program)`).
                    # If you want to perform the testing process, you should pass `test_program` into `amp_init`.
                    optimizer.amp_init(place, scope=paddle.static.global_scope())
1154

H
huangxu96 已提交
1155
                if paddle.is_compiled_with_cuda() and len(paddle.static.cuda_places()) > 0:
1156
                    run_example_code()
H
huangxu96 已提交
1157
        """
1158
        amp_optimizer = self._get_amp_optimizer()
1159
        return amp_optimizer.amp_init(place, scope, test_program, use_fp16_test)
H
huangxu96 已提交
1160

D
Dong Daxiang 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169
    def _final_strategy(self):
        if "valid_strategy" not in self._context:
            print(
                "WARNING: You may need to call minimize function before this function is called"
            )
            return {}
        else:
            return self._context["valid_strategy"]

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    def _get_applied_meta_list(self):
        if "applied_meta_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_meta_list called"
            )
            return []
        else:
            return self._context["applied_meta_list"]

    def _get_applied_graph_list(self):
        if "applied_graph_list" not in self._context:
            print(
                "WARNING: You may need to call minimize function before _get_applied_graph_list called"
            )
            return []
        else:
            return self._context["applied_graph_list"]

1188 1189 1190
    def minimize(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
1191 1192 1193 1194
        """
        Add distributed operations to minimize ``loss`` by updating ``parameter_list``.

        Args:
1
123malin 已提交
1195
            loss (Tensor): A ``Tensor`` containing the value to minimize.
1196 1197 1198
            startup_program (Program, optional): :ref:`api_fluid_Program` for
                initializing parameters in ``parameter_list``. The default value
                is None, at this time :ref:`api_fluid_default_startup_program` will be used.
1
123malin 已提交
1199
            parameter_list (Iterable, optional): Iterable of ``Tensor`` or ``Tensor.name`` to update
1200 1201
                to minimize ``loss``. The default value is None, at this time all parameters
                will be updated.
1
123malin 已提交
1202
            no_grad_set (set, optional): Set of ``Tensor``  or ``Tensor.name`` that don't need
1203 1204 1205 1206
                to be updated. The default value is None.

        Returns:
            tuple: tuple (optimize_ops, params_grads), A list of operators appended
1
123malin 已提交
1207
            by minimize and a list of (param, grad) tensor pairs, param is
1208
            ``Parameter``, grad is the gradient value corresponding to the parameter.
1209 1210
            The returned tuple can be passed to ``fetch_list`` in ``Executor.run()`` to
            indicate program pruning. If so, the program will be pruned by ``feed`` and
1211 1212 1213
            ``fetch_list`` before run, see details in ``Executor``.

        Examples:
1
123malin 已提交
1214

1215
            .. code-block:: python
1216

1217
                import paddle
1
123malin 已提交
1218
                paddle.enable_static()
1219
                import paddle.distributed.fleet as fleet
1
123malin 已提交
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
                import paddle.nn.functional as F

                hid_dim = 10
                label_dim = 2
                input_x = paddle.static.data(name='x', shape=[None, 13], dtype='float32')
                input_y = paddle.static.data(name='y', shape=[None, 1], dtype='int64')
                fc_1 = paddle.static.nn.fc(x=input_x, size=hid_dim, activation='tanh')
                fc_2 = paddle.static.nn.fc(x=fc_1, size=hid_dim, activation='tanh')
                prediction = paddle.static.nn.fc(x=[fc_2], size=label_dim, activation='softmax')
                cost = F.cross_entropy(input=prediction, label=input_y)
                avg_cost = paddle.mean(x=cost)
1231

1
123malin 已提交
1232
                fleet.init(is_collective=True)
1233 1234 1235 1236
                strategy = fleet.DistributedStrategy()
                optimizer = paddle.optimizer.SGD(learning_rate=0.001)
                optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
                optimizer.minimize(avg_cost)
1237

1238
                # for more examples, please reference https://github.com/PaddlePaddle/PaddleFleetX
1239 1240

        """
1241
        if not isinstance(loss, list):
1242 1243 1244
            return self._minimize_impl(
                loss, startup_program, parameter_list, no_grad_set
            )
1245
        else:
1246
            if (
1247
                paddle.framework._non_static_mode()
1248 1249 1250
                or self._role_maker._is_non_distributed()
                or self._is_collective
            ):
1251
                raise ValueError("loss can be list only in PS mode")
1252 1253 1254 1255 1256 1257 1258
            return self._minimize_losses_impl(
                loss, startup_program, parameter_list, no_grad_set
            )

    def _minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
D
Dong Daxiang 已提交
1259 1260
        context = {}
        context["user_defined_strategy"] = copy.deepcopy(
1261 1262
            self._user_defined_strategy
        )
1263
        if paddle.framework._non_static_mode():
1264 1265
            # imitate target optimizer retrieval
            target_opt = self.user_defined_optimizer
D
Dong Daxiang 已提交
1266
            self._context = context
1267 1268
            return target_opt.minimize(loss)

1269 1270
        # cache original feed forward program
        self.origin_main_program = loss.block.program
B
Baibaifan 已提交
1271 1272 1273 1274
        # add distributed attr
        if not hasattr(self.origin_main_program, "distributed_info_"):
            setattr(self.origin_main_program, "distributed_info_", dict())
            self.origin_main_program.distributed_info_[
1275 1276
                "dp_degree"
            ] = self._user_defined_strategy.sharding_configs["dp_degree"]
B
Baibaifan 已提交
1277
            self.origin_main_program.distributed_info_[
1278 1279
                "mp_degree"
            ] = self._user_defined_strategy.sharding_configs["mp_degree"]
B
Baibaifan 已提交
1280
            self.origin_main_program.distributed_info_[
1281 1282
                "pp_degree"
            ] = self._user_defined_strategy.sharding_configs["pp_degree"]
B
Baibaifan 已提交
1283
            self.origin_main_program.distributed_info_[
1284 1285
                "sharding_degree"
            ] = self._user_defined_strategy.sharding_configs["sharding_degree"]
B
Baibaifan 已提交
1286

1287
        context["origin_main_program"] = self.origin_main_program
1288
        context["origin_main_programs"] = [self.origin_main_program]
1289
        context["loss"] = loss
1290
        if startup_program is None:
1291
            self.origin_startup_program = (
1292
                paddle.static.default_startup_program().clone(for_test=False)
1293
            )
1294
            startup_program = paddle.static.default_startup_program()
1295
        else:
1296
            self.origin_startup_program = startup_program.clone(for_test=False)
1297

1298
        context["origin_startup_program"] = startup_program
1299
        context["origin_startup_programs"] = [startup_program]
1300
        context["role_maker"] = self._role_maker
1301

1302
        # Use the auto-parallel's routines instead
1303 1304 1305 1306
        if (
            self._user_defined_strategy.semi_auto
            or self._user_defined_strategy.auto_search
        ):
W
wuhuachaocoding 已提交
1307
            from ..auto_parallel.parallelizer import AutoParallelizer
1308

1309
            auto_parallelizer = AutoParallelizer(self)
1310 1311 1312 1313 1314 1315 1316 1317
            (
                optimize_ops,
                params_grads,
                dist_startup_prog,
                dist_main_prog,
            ) = auto_parallelizer.parallelize(
                loss, startup_program, parameter_list, no_grad_set
            )
1318

1319 1320
            return optimize_ops, params_grads, dist_startup_prog, dist_main_prog

1321
        # compile time
1322
        distributed_optimizer_list = (
1323
            MetaOptimizerFactory()._get_valid_meta_optimizers(
1324 1325 1326
                self.user_defined_optimizer
            )
        )
D
Dong Daxiang 已提交
1327

D
Dong Daxiang 已提交
1328
        context["user_defined_strategy"] = copy.deepcopy(
1329 1330
            self._user_defined_strategy
        )
D
Dong Daxiang 已提交
1331
        copy_user_defined_strategy = copy.deepcopy(self._user_defined_strategy)
1332 1333 1334 1335 1336 1337

        # trigger the auto-parallel in very strict condition
        # strategy = DistributedStrategy()
        # strategy.auto = True
        # optimizer = paddle.optimizer.SGD(learning_rate=0.1)
        # optimizer = fleet.distributed_optimizer(optimizer, strategy)
D
Dong Daxiang 已提交
1338
        if copy_user_defined_strategy._is_strict_auto():
1339 1340
            # turn on all the strategy for each optimizer
            for opt in distributed_optimizer_list:
D
Dong Daxiang 已提交
1341
                opt._enable_strategy(copy_user_defined_strategy, context)
1342

1343 1344
        valid_optimizer_list = []
        valid_graph_optimizer_list = []
D
Dong Daxiang 已提交
1345
        can_not_apply_optimizer_list = []
1346 1347
        # recall meta optimizers for ranking
        for opt in distributed_optimizer_list:
1348 1349 1350 1351 1352 1353
            opt._set_basic_info(
                loss,
                self._role_maker,
                self.user_defined_optimizer,
                copy_user_defined_strategy,
            )
1354 1355
            if opt._can_apply() and not opt._is_graph_out():
                valid_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1356
            elif opt._can_apply() and opt._is_graph_out():
1357
                valid_graph_optimizer_list.append(opt)
D
Dong Daxiang 已提交
1358 1359
            else:
                can_not_apply_optimizer_list.append(opt)
1360
        # combine recalled meta optimizers to be a valid meta optimizer
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
        (
            meta_optimizer,
            graph_optimizer,
        ) = self.strategy_compiler.generate_optimizer(
            loss,
            self._role_maker,
            self.user_defined_optimizer,
            copy_user_defined_strategy,
            valid_optimizer_list,
            valid_graph_optimizer_list,
        )
D
Dong Daxiang 已提交
1372

D
Dong Daxiang 已提交
1373
        valid_strategy = self.strategy_compiler._get_valid_strategy(
1374 1375
            copy_user_defined_strategy, can_not_apply_optimizer_list
        )
D
Dong Daxiang 已提交
1376 1377

        context["valid_strategy"] = copy.deepcopy(valid_strategy)
R
Roc 已提交
1378
        logger.debug("valid_strategy: " + str(context["valid_strategy"]))
1379 1380 1381
        logger.debug(
            "user_defined_strategy: " + str(context["user_defined_strategy"])
        )
1382

1383 1384 1385 1386 1387 1388
        applied_meta_list = self.strategy_compiler._get_applied_meta_list()
        applied_graph_list = self.strategy_compiler._get_applied_graph_list()

        context['applied_meta_list'] = applied_meta_list
        context['applied_graph_list'] = applied_graph_list

D
Dong Daxiang 已提交
1389
        self._context = context
1390

D
Dong Daxiang 已提交
1391
        self.valid_strategy = valid_strategy
1392
        self.valid_strategy._enable_env()
D
Dong Daxiang 已提交
1393

1394 1395
        optimize_ops = []
        params_grads = []
1396

1397 1398 1399 1400 1401
        if self._role_maker._is_non_distributed() and not self._is_collective:
            if self._runtime_handle is None:
                self._runtime_handle = RuntimeFactory()._create_runtime(context)

            compiled_program = compiler.CompiledProgram(
1402 1403
                self.origin_main_program
            ).with_data_parallel(loss_name=loss.name, share_vars_from=None)
1404
            loss.block.program._graph = compiled_program
1405 1406 1407
            return self.user_defined_optimizer.minimize(
                loss, startup_program, parameter_list, no_grad_set=no_grad_set
            )
1408

1409
        if meta_optimizer:
1410 1411 1412
            logger.debug(
                "before minimize program id: " + str(id(loss.block.program))
            )
1413
            optimize_ops, params_grads = meta_optimizer.minimize(
1414 1415 1416 1417 1418
                loss, startup_program, parameter_list, no_grad_set=no_grad_set
            )
            logger.debug(
                "after minimize program id: " + str(id(loss.block.program))
            )
1419
            default_program = paddle.static.default_main_program()
R
Roc 已提交
1420
            logger.debug("default program id: " + str(id(default_program)))
1421 1422

            if id(default_program) != id(loss.block.program):
1423
                paddle.framework.switch_main_program(loss.block.program)
1424 1425 1426
            logger.debug(
                "default program id after switch: " + str(id(default_program))
            )
1427

1428 1429
        else:
            optimize_ops, params_grads = self.user_defined_optimizer.minimize(
1430 1431
                loss, startup_program, parameter_list, no_grad_set=no_grad_set
            )
1432

1433 1434
        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads
1435

1436
        if graph_optimizer:
1437 1438 1439 1440
            logger.debug(
                "before graph minimize program id: "
                + str(id(loss.block.program))
            )
D
Dong Daxiang 已提交
1441
            optimize_ops, params_grads = graph_optimizer.minimize(
1442 1443
                loss, startup_program, parameter_list, no_grad_set=no_grad_set
            )
1444 1445 1446 1447
            # since we do not encourage users to use graph operations
            # if a graph optimizer takes effect, mostly
            # optimizers_ops and params_grads are None
            # i.e. users can not modify current computation graph anymore
1448 1449
            context["graph_optimize_ops"] = optimize_ops
            context["graph_optimize_grads"] = params_grads
1450 1451
        else:
            apply_ir_passes(loss.block.program, startup_program, self)
1452

1453 1454
        if not self._role_maker._is_heter_parameter_server_mode:
            program = paddle.static.default_main_program()
1455 1456 1457
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
1458 1459 1460 1461
            for (
                k,
                v,
            ) in self._user_defined_strategy.trainer_desc_configs.items():
1462
                if v or k not in opt_info:
1463
                    opt_info[k] = v
1464 1465 1466 1467 1468 1469
            program._fleet_opt = opt_info

        if self._runtime_handle is None:
            self._runtime_handle = RuntimeFactory()._create_runtime(context)

        import paddle.distributed.fleet as fleet
1470

1471 1472 1473 1474
        fleet.util._set_strategy(context["valid_strategy"])

        return optimize_ops, params_grads

1475 1476 1477 1478 1479 1480 1481
    def _minimize_losses_impl(
        self,
        losses,
        startup_programs=None,
        parameter_list=None,
        no_grad_set=None,
    ):
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
        context = {}

        # cache original feed forward program
        self.origin_main_program = losses[0].block.program
        context["origin_main_program"] = self.origin_main_program
        context["origin_main_programs"] = []
        for loss in losses:
            context["origin_main_programs"].append(loss.block.program)
        context["loss"] = losses

        if startup_programs is None:
            if len(losses) == 1:
                startup_programs = [paddle.static.default_startup_program()]
            else:
                raise ValueError(
1497 1498
                    "startup_program can't be None when loss is list."
                )
1499 1500 1501 1502 1503 1504 1505 1506 1507
        self.origin_startup_program = startup_programs[0].clone(for_test=False)
        context["origin_startup_program"] = startup_programs[0]
        context["origin_startup_programs"] = []
        for program in startup_programs:
            context["origin_startup_programs"].append(program)

        context["role_maker"] = self._role_maker

        context["user_defined_strategy"] = copy.deepcopy(
1508 1509
            self._user_defined_strategy
        )
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520

        context["valid_strategy"] = copy.deepcopy(self._user_defined_strategy)

        self._context = context

        self.valid_strategy = context["valid_strategy"]
        self.valid_strategy._enable_env()

        optimize_ops = []
        params_grads = []

W
wuhuachaocoding 已提交
1521
        from .meta_optimizers import ParameterServerOptimizer
1522

1523
        ps_optimizer = ParameterServerOptimizer(self.user_defined_optimizer)
1524 1525 1526 1527 1528 1529
        ps_optimizer._set_basic_info(
            losses,
            self._role_maker,
            self.user_defined_optimizer,
            self._user_defined_strategy,
        )
1530
        optimize_ops, params_grads = ps_optimizer.minimize_losses_impl(
1531 1532
            losses, startup_programs, parameter_list, no_grad_set=no_grad_set
        )
1533 1534 1535 1536

        # default_program = paddle.static.default_main_program()

        # if id(default_program) != id(losses[0].block.program):
1537
        #     paddle.framework.switch_main_program(losses[0].block.program)
1538 1539 1540 1541 1542 1543 1544

        context["program_optimize_ops"] = optimize_ops
        context["program_params_grads"] = params_grads

        for loss in losses:
            program = loss.block.program
            opt_info = {} if program._fleet_opt is None else program._fleet_opt
1545 1546
            opt_info["mpi_size"] = self.worker_num()
            opt_info["mpi_rank"] = self.worker_index()
1547 1548 1549 1550
            for (
                k,
                v,
            ) in self._user_defined_strategy.trainer_desc_configs.items():
1551
                if v or k not in opt_info:
1552
                    opt_info[k] = v
1553
            program._fleet_opt = opt_info
1554 1555 1556 1557 1558
            logger.debug(
                "fleet base opt info: "
                + str(id(program))
                + str(program._fleet_opt)
            )
1559

1560
        if self._runtime_handle is None:
1561
            self._runtime_handle = RuntimeFactory()._create_runtime(context)
1562

1563
        import paddle.distributed.fleet as fleet
1564

1565
        fleet.util._set_strategy(context["valid_strategy"])
1566 1567

        return optimize_ops, params_grads