test_elementwise_sub_op.py 14.1 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
C
chentianyu03 已提交
18
import paddle
19
import paddle.fluid as fluid
20 21
import paddle.fluid.core as core
from op_test import OpTest, skip_check_grad_ci, convert_float_to_uint16
22
from paddle.fluid.framework import _test_eager_guard
G
gongweibao 已提交
23 24 25


class TestElementwiseOp(OpTest):
26

G
gongweibao 已提交
27 28 29
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
30 31
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 4, 5]).astype("float64")
G
gongweibao 已提交
32 33 34 35 36 37 38
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
39
        self.check_grad(['X', 'Y'], 'Out')
G
gongweibao 已提交
40 41

    def test_check_grad_ingore_x(self):
42 43 44 45
        self.check_grad(['Y'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set("X"))
G
gongweibao 已提交
46 47

    def test_check_grad_ingore_y(self):
48 49 50 51
        self.check_grad(['X'],
                        'Out',
                        max_relative_error=0.005,
                        no_grad_set=set('Y'))
G
gongweibao 已提交
52 53


54
class TestBF16ElementwiseOp(OpTest):
55

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.uint16
        x = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        y = np.random.uniform(0.1, 1, [13, 17]).astype(np.float32)
        out = x - y

        self.inputs = {
            'X': convert_float_to_uint16(x),
            'Y': convert_float_to_uint16(y)
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


82 83
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
84
class TestElementwiseSubOp_scalar(TestElementwiseOp):
85

86 87 88
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
89 90
            'X': np.random.rand(10, 3, 4).astype(np.float64),
            'Y': np.random.rand(1).astype(np.float64)
91 92 93 94
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


G
gongweibao 已提交
95
class TestElementwiseSubOp_Vector(TestElementwiseOp):
96

G
gongweibao 已提交
97 98 99
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
100 101
            'X': np.random.random((100, )).astype("float64"),
            'Y': np.random.random((100, )).astype("float64")
G
gongweibao 已提交
102 103 104 105 106
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_broadcast_0(TestElementwiseOp):
107

G
gongweibao 已提交
108 109 110
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
111 112
            'X': np.random.rand(100, 3, 2).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
113 114 115 116
        }

        self.attrs = {'axis': 0}
        self.outputs = {
117
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(100, 1, 1)
G
gongweibao 已提交
118 119 120 121
        }


class TestElementwiseSubOp_broadcast_1(TestElementwiseOp):
122

G
gongweibao 已提交
123 124 125
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
126 127
            'X': np.random.rand(2, 100, 3).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
128 129 130 131
        }

        self.attrs = {'axis': 1}
        self.outputs = {
132
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 100, 1)
G
gongweibao 已提交
133 134 135 136
        }


class TestElementwiseSubOp_broadcast_2(TestElementwiseOp):
137

G
gongweibao 已提交
138 139 140
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
141 142
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
G
gongweibao 已提交
143 144 145
        }

        self.outputs = {
146
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 1, 100)
G
gongweibao 已提交
147 148 149 150
        }


class TestElementwiseSubOp_broadcast_3(TestElementwiseOp):
151

G
gongweibao 已提交
152 153 154
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
155 156
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
            'Y': np.random.rand(10, 12).astype(np.float64)
G
gongweibao 已提交
157 158 159 160
        }

        self.attrs = {'axis': 1}
        self.outputs = {
161
            'Out': self.inputs['X'] - self.inputs['Y'].reshape(1, 10, 12, 1)
G
gongweibao 已提交
162 163 164
        }


165
class TestElementwiseSubOp_broadcast_4(TestElementwiseOp):
166

167 168 169
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
170 171
            'X': np.random.rand(2, 5, 3, 12).astype(np.float64),
            'Y': np.random.rand(2, 5, 1, 12).astype(np.float64)
172 173 174 175
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


176
class TestElementwiseSubOp_commonuse_1(TestElementwiseOp):
177

178 179 180
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
181 182
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(1, 1, 100).astype(np.float64)
183 184 185 186 187
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_commonuse_2(TestElementwiseOp):
188

189 190 191
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
192 193
            'X': np.random.rand(10, 3, 1, 4).astype(np.float64),
            'Y': np.random.rand(10, 1, 12, 1).astype(np.float64)
194 195 196 197 198
        }
        self.outputs = {'Out': self.inputs['X'] - self.inputs['Y']}


class TestElementwiseSubOp_xsize_lessthan_ysize(TestElementwiseOp):
199

200 201 202
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.inputs = {
203 204
            'X': np.random.rand(10, 12).astype(np.float64),
            'Y': np.random.rand(2, 3, 10, 12).astype(np.float64)
205 206 207 208 209
        }

        self.attrs = {'axis': 2}

        self.outputs = {
210
            'Out': self.inputs['X'].reshape(1, 1, 10, 12) - self.inputs['Y']
211 212 213
        }


C
chentianyu03 已提交
214
class TestComplexElementwiseSubOp(OpTest):
215

C
chentianyu03 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    def setUp(self):
        self.op_type = "elementwise_sub"
        self.dtype = np.float64
        self.shape = (2, 3, 4, 5)
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
241 242
        self.grad_out = np.ones(
            self.shape, self.dtype) + 1J * np.ones(self.shape, self.dtype)
C
chentianyu03 已提交
243 244 245 246 247 248 249
        self.grad_x = self.grad_out
        self.grad_y = -self.grad_out

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
250 251 252 253
        self.check_grad(['X', 'Y'],
                        'Out',
                        user_defined_grads=[self.grad_x, self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
254 255

    def test_check_grad_ingore_x(self):
256 257 258 259 260
        self.check_grad(['Y'],
                        'Out',
                        no_grad_set=set("X"),
                        user_defined_grads=[self.grad_y],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
261 262

    def test_check_grad_ingore_y(self):
263 264 265 266 267
        self.check_grad(['X'],
                        'Out',
                        no_grad_set=set('Y'),
                        user_defined_grads=[self.grad_x],
                        user_defined_grad_outputs=[self.grad_out])
C
chentianyu03 已提交
268 269 270


class TestRealComplexElementwiseSubOp(TestComplexElementwiseSubOp):
271

C
chentianyu03 已提交
272 273 274 275 276 277 278
    def init_input_output(self):
        self.x = np.random.random(self.shape).astype(self.dtype)
        self.y = np.random.random(self.shape).astype(
            self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
        self.out = self.x - self.y

    def init_grad_input_output(self):
279 280
        self.grad_out = np.ones(
            self.shape, self.dtype) + 1J * np.ones(self.shape, self.dtype)
C
chentianyu03 已提交
281 282 283 284
        self.grad_x = np.real(self.grad_out)
        self.grad_y = -self.grad_out


285
class TestSubtractApi(unittest.TestCase):
286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
    def _executed_api(self, x, y, name=None):
        return paddle.subtract(x, y, name)

    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')

            y_1 = self._executed_api(x, y, name='subtract_res')
            self.assertEqual(('subtract_res' in y_1.name), True)

    def test_declarative(self):
        with fluid.program_guard(fluid.Program()):

            def gen_data():
                return {
                    "x": np.array([2, 3, 4]).astype('float32'),
                    "y": np.array([1, 5, 2]).astype('float32')
                }

            x = fluid.data(name="x", shape=[3], dtype='float32')
            y = fluid.data(name="y", shape=[3], dtype='float32')
            z = self._executed_api(x, y)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            z_value = exe.run(feed=gen_data(), fetch_list=[z.name])
            z_expected = np.array([1., -2., 2.])
            self.assertEqual((z_value == z_expected).all(), True)

    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = fluid.dygraph.to_variable(np_x)
            y = fluid.dygraph.to_variable(np_y)
            z = self._executed_api(x, y)
            np_z = z.numpy()
            z_expected = np.array([1., -2., 2.])
            self.assertEqual((np_z == z_expected).all(), True)


class TestSubtractInplaceApi(TestSubtractApi):
329

330 331 332 333 334
    def _executed_api(self, x, y, name=None):
        return x.subtract_(y, name)


class TestSubtractInplaceBroadcastSuccess(unittest.TestCase):
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.subtract_(y)
        numpy_result = self.x_numpy - self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestSubtractInplaceBroadcastSuccess2(TestSubtractInplaceBroadcastSuccess):
352

353 354 355 356 357 358
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestSubtractInplaceBroadcastSuccess3(TestSubtractInplaceBroadcastSuccess):
359

360 361 362 363 364 365
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


class TestSubtractInplaceBroadcastError(unittest.TestCase):
366

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    def init_data(self):
        self.x_numpy = np.random.rand(3, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')

    def test_broadcast_errors(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)

        def broadcast_shape_error():
            x.subtract_(y)

        self.assertRaises(ValueError, broadcast_shape_error)
        paddle.enable_static()


class TestSubtractInplaceBroadcastError2(TestSubtractInplaceBroadcastError):
385

386 387 388 389 390 391
    def init_data(self):
        self.x_numpy = np.random.rand(2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


class TestSubtractInplaceBroadcastError3(TestSubtractInplaceBroadcastError):
392

393 394 395 396 397
    def init_data(self):
        self.x_numpy = np.random.rand(5, 2, 1, 4).astype('float')
        self.y_numpy = np.random.rand(2, 3, 4).astype('float')


398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
class TestFloatElementwiseSubop(unittest.TestCase):

    def func_dygraph_sub(self):
        paddle.disable_static()

        np_a = np.random.random((2, 3, 4)).astype(np.float64)
        np_b = np.random.random((2, 3, 4)).astype(np.float64)

        tensor_a = paddle.to_tensor(np_a, dtype="float32")
        tensor_b = paddle.to_tensor(np_b, dtype="float32")

        # normal case: tensor - tensor
        expect_out = np_a - np_b
        actual_out = tensor_a - tensor_b
        np.testing.assert_allclose(actual_out,
                                   expect_out,
                                   rtol=1e-07,
                                   atol=1e-07)

        # normal case: tensor - scalar
        expect_out = np_a - 1
        actual_out = tensor_a - 1
        np.testing.assert_allclose(actual_out,
                                   expect_out,
                                   rtol=1e-07,
                                   atol=1e-07)

        # normal case: scalar - tenor
        expect_out = 1 - np_a
        actual_out = 1 - tensor_a
        np.testing.assert_allclose(actual_out,
                                   expect_out,
                                   rtol=1e-07,
                                   atol=1e-07)

        paddle.enable_static()

    def test_dygraph_sub(self):
        with _test_eager_guard():
            self.func_dygraph_sub()
        self.func_dygraph_sub()


G
gongweibao 已提交
441
if __name__ == '__main__':
C
chentianyu03 已提交
442
    paddle.enable_static()
G
gongweibao 已提交
443
    unittest.main()