layers.py 182.8 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
16
import collections
Y
Yu Yang 已提交
17
import inspect
18 19 20

from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
Y
Yu Yang 已提交
21
    ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
22 23 24 25
from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType
from .attrs import *
from .default_decorators import *
26

27 28 29 30 31 32
try:
    import cPickle as pickle
except ImportError:
    import pickle
import copy

33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
    'full_matrix_projection',
    'AggregateLevel',
    'ExpandLevel',
    'identity_projection',
    'dotmul_projection',
    'dotmul_operator',
    'repeat_layer',
    'seq_reshape_layer',
    'table_projection',
    'mixed_layer',
    'data_layer',
    'embedding_layer',
    'fc_layer',
    'grumemory',
    'pooling_layer',
    'lstmemory',
    'last_seq',
    'first_seq',
    'cos_sim',
    'hsigmoid',
    'conv_projection',
    'mse_cost',
    'regression_cost',
57
    'classification_cost',
58
    'LayerOutput',
59 60 61 62 63 64
    'img_conv_layer',
    'img_pool_layer',
    'batch_norm_layer',
    'img_cmrnorm_layer',
    'addto_layer',
    'concat_layer',
65
    'seq_concat_layer',
66 67 68 69 70 71
    'lstm_step_layer',
    'recurrent_group',
    'memory',
    'StaticInput',
    'expand_layer',
    'scaling_layer',
X
xuwei06 已提交
72
    'scaling_projection',
73 74 75 76
    'power_layer',
    'interpolation_layer',
    'bilinear_interp_layer',
    'trans_layer',
77
    'rotate_layer',
78 79 80 81 82 83 84 85 86
    'sum_to_one_norm_layer',
    'get_output_layer',
    'LayerType',
    'context_projection',
    'beam_search',
    'maxid_layer',
    'GeneratedInput',
    'SubsequenceInput',
    'gru_step_layer',
87
    'gru_step_naive_layer',
88 89 90 91 92 93 94 95 96 97 98 99
    'recurrent_layer',
    'BaseGeneratedInput',
    'conv_operator',
    'conv_shift_layer',
    'tensor_layer',
    'selective_fc_layer',
    'sampling_id_layer',
    'slope_intercept_layer',
    'trans_full_matrix_projection',
    'linear_comb_layer',
    'convex_comb_layer',
    'ctc_layer',
100
    'warp_ctc_layer',
101 102 103 104 105 106 107 108 109 110 111 112 113
    'crf_layer',
    'crf_decoding_layer',
    'nce_layer',
    'cross_entropy_with_selfnorm',
    'cross_entropy',
    'multi_binary_label_cross_entropy',
    'sum_cost',
    'rank_cost',
    'lambda_cost',
    'huber_cost',
    'block_expand_layer',
    'maxout_layer',
    'out_prod_layer',
114
    'printer_layer',
115
    'print_layer',
Y
yuan 已提交
116
    'priorbox_layer',
117
    'cross_channel_norm_layer',
118
    'spp_layer',
D
dangqingqing 已提交
119
    'pad_layer',
120
    'eos_layer',
121
    'smooth_l1_cost',
122
    'layer_support',
123
    'multiplex_layer',
D
dangqingqing 已提交
124
    'row_conv_layer',
125
    'dropout_layer',
126
    'prelu_layer',
127
]
128 129 130 131 132 133 134


class LayerType(object):
    """
    Layer type enumerations.
    """

135 136 137 138 139 140 141 142
    DATA = 'data'
    MIXED_LAYER = 'mixed'
    LSTMEMORY = 'lstmemory'
    GRUMEMORY = 'gated_recurrent'
    SEQUENCE_LAST_INSTANCE = 'seqlastins'
    SEQUENCE_FIRST_INSTANCE = 'seqfirstins'
    SEQUENCE_RESHAPE = 'seqreshape'
    POOLING_MAX = 'max'
143
    POOLING_AVG = 'average'
144
    FC_LAYER = 'fc'
145
    COST = 'cost'
146 147
    COSINE_SIM_VEC = 'cos_vm'
    COSINE_SIM = 'cos'
148
    HSIGMOID = 'hsigmoid'
149 150 151 152 153 154
    CONV_LAYER = 'conv'
    CONVTRANS_LAYER = 'convt'
    EXCONV_LAYER = 'exconv'
    EXCONVTRANS_LAYER = 'exconvt'
    CUDNNCONV_LAYER = 'cudnn_conv'
    POOL_LAYER = 'pool'
155 156 157 158 159 160 161
    BATCH_NORM_LAYER = 'batch_norm'
    NORM_LAYER = 'norm'
    SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm'
    ADDTO_LAYER = 'addto'

    CONCAT_LAYER = 'concat'
    CONCAT_PROJ_LAYER = 'concat2'
162
    SEQUENCE_CONCAT_LAYER = 'seqconcat'
163 164 165 166 167 168 169

    LSTM_STEP_LAYER = 'lstm_step'
    GRU_STEP_LAYER = 'gru_step'
    GET_OUTPUT_LAYER = 'get_output'

    EXPAND_LAYER = 'expand'
    INTERPOLATION_LAYER = 'interpolation'
170
    BILINEAR_INTERP_LAYER = 'bilinear_interp'
171 172 173
    POWER_LAYER = 'power'
    SCALING_LAYER = 'scaling'
    TRANS_LAYER = 'trans'
174
    ROTATE_LAYER = 'rotate'
175
    OUT_PROD_LAYER = 'out_prod'
176
    FEATURE_MAP_EXPAND_LAYER = 'featmap_expand'
177 178 179 180 181 182 183 184 185 186 187

    MEMORY = 'memory'
    MAXID_LAYER = 'maxid'
    EOSID_LAYER = 'eos_id'
    RECURRENT_LAYER = 'recurrent'

    CONV_SHIFT_LAYER = "conv_shift"
    TENSOR_LAYER = "tensor"
    SEL_FC_LAYER = "selective_fc"
    SAMPLING_ID_LAYER = "sampling_id"
    SLOPE_INTERCEPT_LAYER = "slope_intercept"
188
    LINEAR_COMBINATION_LAYER = "convex_comb"
189
    BLOCK_EXPAND = "blockexpand"
190
    MAXOUT = "maxout"
Q
qijun 已提交
191
    SPP_LAYER = "spp"
D
dangqingqing 已提交
192
    PAD_LAYER = "pad"
193
    MULTIPLEX_LAYER = "multiplex"
D
dangqingqing 已提交
194
    ROW_CONV_LAYER = "row_conv"
D
dangqingqing 已提交
195 196 197 198 199 200 201 202

    PRINT_LAYER = 'print'
    PRIORBOX_LAYER = 'priorbox'

    CTC_LAYER = 'ctc'
    WARP_CTC_LAYER = 'warp_ctc'
    CRF_LAYER = 'crf'
    CRF_DECODING_LAYER = 'crf_decoding'
203
    NCE_LAYER = 'nce'
204

205 206 207 208 209 210 211 212 213 214 215
    RANK_COST = 'rank-cost'
    LAMBDA_COST = 'lambda_cost'
    HUBER = 'huber'
    CROSS_ENTROPY = 'multi-class-cross-entropy'
    CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm'
    SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy'
    MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy'
    SUM_COST = 'sum_cost'
    SMOOTH_L1 = 'smooth_l1'

    PRELU = 'prelu'
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    @staticmethod
    def is_layer_type(type_name):
        """
        If type_name is a layer type.

        :param type_name: layer type name. Because layer type enumerations are
                          strings.
        :type type_name: basestring
        :return: True if is a layer_type
        :rtype: bool
        """
        for key in dir(LayerType):
            if key.isupper():
                att = getattr(LayerType, key)
                if isinstance(att, basestring) and type_name == att:
                    return True
        return False


class AggregateLevel(object):
237
    """
L
Luo Tao 已提交
238
    PaddlePaddle supports three sequence types:
239 240 241

    - :code:`SequenceType.NO_SEQUENCE` means the sample is not a sequence.
    - :code:`SequenceType.SEQUENCE` means the sample is a sequence.
L
Luo Tao 已提交
242 243
    - :code:`SequenceType.SUB_SEQUENCE` means the sample is a nested sequence,
      each timestep of which is also a sequence.
244

L
Luo Tao 已提交
245
    Accordingly, AggregateLevel supports two modes:
246

247
    - :code:`AggregateLevel.TO_NO_SEQUENCE` means the aggregation acts on each
L
Luo Tao 已提交
248
      timestep of a sequence, both :code:`SUB_SEQUENCE` and :code:`SEQUENCE` will
249 250
      be aggregated to :code:`NO_SEQUENCE`.

251
    - :code:`AggregateLevel.TO_SEQUENCE` means the aggregation acts on each
252 253 254
      sequence of a nested sequence, :code:`SUB_SEQUENCE` will be aggregated to
      :code:`SEQUENCE`.
    """
255 256
    TO_NO_SEQUENCE = 'non-seq'
    TO_SEQUENCE = 'seq'
257 258 259
    # compatible with previous configuration
    EACH_TIMESTEP = TO_NO_SEQUENCE
    EACH_SEQUENCE = TO_SEQUENCE
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281


class LayerOutput(object):
    """
    LayerOutput is output for layer function. It is used internally by several
    reasons.

    - Check layer connection make sense.

        - FC(Softmax) => Cost(MSE Error) is not good for example.

    - Tracking layer connection.

    - Pass to layer methods as input.

    :param name: Layer output name.
    :type name: basestring
    :param layer_type: Current Layer Type. One of LayerType enumeration.
    :type layer_type: basestring
    :param activation: Layer Activation.
    :type activation: BaseActivation.
    :param parents: Layer's parents.
282
    :type parents: list|tuple|collections.Sequence
283 284
    """

285 286 287 288 289 290 291 292 293
    def __init__(self,
                 name,
                 layer_type,
                 parents=None,
                 activation=None,
                 num_filters=None,
                 img_norm_type=None,
                 size=None,
                 outputs=None,
294
                 reverse=None):
295 296
        assert isinstance(name, basestring)
        assert isinstance(layer_type, basestring)
297
        assert size is not None
298 299
        assert LayerType.is_layer_type(layer_type)
        self.name = name
X
xuwei06 已提交
300
        self.full_name = MakeLayerNameInSubmodel(name)
301
        self.layer_type = layer_type
302 303
        if parents is not None and type(parents) != list:
            parents = [parents]
304 305 306 307 308 309 310 311
        self.parents = [] if parents is None else parents
        self.activation = activation
        self.num_filters = num_filters
        self.img_norm_type = img_norm_type
        self.size = size
        if outputs is None:
            outputs = ['default']
        self.outputs = outputs
312
        self.reverse = reverse
313 314 315 316 317 318 319 320 321 322 323 324 325

    def __repr__(self):
        """
        Disable __repr__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

    def __str__(self):
        """
        Disable __str__ for debug reason. Will be implemented when release
        """
        assert False, "this method should not be invoked"

326 327 328 329 330 331 332 333
    def set_input(self, input):
        """
        Set the input for a memory layer. Can only be used for memory layer
        """
        assert isinstance(input, LayerOutput)
        assert self.layer_type == LayerType.MEMORY
        SetMemoryInput(self.name, input.name)

334 335 336

ERROR_CLIPPING = 'error_clipping_threshold'
DROPOUT = 'drop_rate'
337
DEVICE = 'device'
338 339 340


def layer_support(*attrs):
341
    attrs_list = list(attrs)
342
    attrs_list.append(DEVICE)
343

344 345 346
    def decorator(method):
        @functools.wraps(method)
        def wrapper(*args, **kwargs):
347
            for attr in attrs_list:
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                for each in args:
                    if isinstance(each, ExtraLayerAttribute):
                        setattr(each, '_'.join(['can', attr]), True)
                for key in kwargs:
                    val = kwargs[key]
                    if isinstance(val, ExtraLayerAttribute):
                        setattr(val, '_'.join(['can', attr]), True)
            for each in args:
                if isinstance(each, ExtraLayerAttribute):
                    each.check(method.__name__)
            for key in kwargs:
                val = kwargs[key]
                if isinstance(val, ExtraLayerAttribute):
                    val.check(method.__name__)
            return method(*args, **kwargs)

Y
Yu Yang 已提交
364 365 366 367 368
        if hasattr(method, 'argspec'):
            wrapper.argspec = method.argspec
        else:
            wrapper.argspec = inspect.getargspec(method)

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        return wrapper

    return decorator


@wrap_param_attr_default()
def full_matrix_projection(input, size=0, param_attr=None):
    """
    Full Matrix Projection. It performs full matrix multiplication.

    ..  math::
        out.row[i] += in.row[i] * weight

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += full_matrix_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = full_matrix_projection(input=layer,
                                     size=100,
                                     param_attr=ParamAttr(name='_proj'))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A FullMatrixProjection Object.
    :rtype: FullMatrixProjection
    """
408 409
    proj = FullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
410 411 412 413
    proj.origin = input
    return proj


414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
@wrap_param_attr_default()
def trans_full_matrix_projection(input, size=0, param_attr=None):
    """
    Different from full_matrix_projection, this projection performs matrix
    multiplication, using transpose of weight.

    ..  math::
        out.row[i] += in.row[i] * w^\mathrm{T}

    :math:`w^\mathrm{T}` means transpose of weight.
    The simply usage is:

    .. code-block:: python

       proj = trans_full_matrix_projection(input=layer,
                                           size=100,
                                           param_attr=ParamAttr(
                                                name='_proj',
                                                initial_mean=0.0,
                                                initial_std=0.01))

    :param input: input layer
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TransposedFullMatrixProjection Object.
    :rtype: TransposedFullMatrixProjection
    """
444 445
    proj = TransposedFullMatrixProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
446 447 448 449
    proj.origin = input
    return proj


450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
@wrap_param_attr_default()
def table_projection(input, size=0, param_attr=None):
    """
    Table Projection. It selects rows from parameter where row\_id
    is in input\_ids.

    .. math::
       out.row[i] += table.row[ids[i]]

    where :math:`out` is output, :math:`table` is parameter, :math:`ids` is input\_ids,
    and :math:`i` is row\_id.

    There are two styles of usage.

    1. When used in mixed_layer like this, you can only set the input:

    .. code-block:: python

       with mixed_layer(size=100) as m:
           m += table_projection(input=layer)

    2. When used as an independant object like this, you must set the size:

    .. code-block:: python

       proj = table_projection(input=layer,
                               size=100,
                               param_attr=ParamAttr(name='_proj'))


    :param input: Input layer, which must contains id fields.
    :type input: LayerOutput
    :param size: The parameter size. Means the width of parameter.
    :type size: int
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A TableProjection Object.
    :rtype: TableProjection
    """
489 490
    proj = TableProjection(
        input_layer_name=input.name, size=size, **param_attr.attr)
491 492 493 494
    proj.origin = input
    return proj


495
def identity_projection(input, offset=None, size=None):
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
    """
    1. IdentityProjection if offset=None. It performs:

    .. math::
       out.row[i] += in.row[i]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer)


    2. IdentityOffsetProjection if offset!=None. It likes IdentityProjection,
    but layer size may be smaller than input size.
    It select dimesions [offset, offset+layer_size) from input:

    .. math::
       out.row[i] += in.row[i + \\textrm{offset}]

    The example usage is:

    .. code-block:: python

       proj = identity_projection(input=layer,
                                  offset=10)

    Note that both of two projections should not have any parameter.

    :param input: Input Layer.
526
    :type input: LayerOutput
527 528
    :param offset: Offset, None if use default.
    :type offset: int
X
xuwei06 已提交
529
    :return: A IdentityProjection or IdentityOffsetProjection object
530 531 532 533 534 535
    :rtype: IdentityProjection or IdentityOffsetProjection
    """
    if offset is None:
        proj = IdentityProjection(input_layer_name=input.name)
        proj.origin = input
    else:
536 537
        if size is None:
            size = input.size - offset
538
        proj = IdentityOffsetProjection(
539
            input_layer_name=input.name, offset=offset, size=size)
540 541 542 543
        proj.origin = input
    return proj


X
xuwei06 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
@wrap_param_attr_default()
def scaling_projection(input, param_attr=None):
    """
    scaling_projection multiplies the input with a scalar parameter and add to
    the output.

    .. math::
       out += w * in

    The example usage is:

    .. code-block:: python

       proj = scaling_projection(input=layer)

    :param input: Input Layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A ScalingProjection object
    :rtype: ScalingProjection
    """
566
    proj = ScalingProjection(input_layer_name=input.name, **param_attr.attr)
X
xuwei06 已提交
567 568 569 570
    proj.origin = input
    return proj


571
@wrap_param_attr_default()
572
def dotmul_projection(input, param_attr=None):
573
    """
574
    DotMulProjection with a layer as input.
575 576 577 578 579 580 581 582 583 584 585 586 587
    It performs element-wise multiplication with weight.

    ..  math::
        out.row[i] += in.row[i] .* weight

    where :math:`.*` means element-wise multiplication.

    The example usage is:

    .. code-block:: python

       proj = dotmul_projection(input=layer)

588 589 590 591 592 593 594
    :param input: Input layer.
    :type input: LayerOutput
    :param param_attr: Parameter config, None if use default.
    :type param_attr: ParameterAttribute
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
595 596
    proj = DotMulProjection(
        input_layer_name=input.name, size=input.size, **param_attr.attr)
597
    proj.origin = input
598
    return proj
599

600 601

def dotmul_operator(a=None, b=None, scale=1, **kwargs):
602 603
    """
    DotMulOperator takes two inputs and performs element-wise multiplication:
604

605
    .. math::
L
Luo Tao 已提交
606
       out.row[i] += scale * (a.row[i] .* b.row[i])
607

608 609
    where :math:`.*` means element-wise multiplication, and
    scale is a config scalar, its default value is one.
610

611
    The example usage is:
612

613
    .. code-block:: python
614

L
Luo Tao 已提交
615
       op = dotmul_operator(a=layer1, b=layer2, scale=0.5)
616

617 618 619 620
    :param a: Input layer1
    :type a: LayerOutput
    :param b: Input layer2
    :type b: LayerOutput
621 622
    :param scale: config scalar, default value is one.
    :type scale: float
623 624
    :return: A DotMulOperator Object.
    :rtype: DotMulOperator
625
    """
626 627 628
    if 'x' in kwargs or 'y' in kwargs:
        logger.warning('x and y arguments for dotmul_operator is deprecated. '
                       'Please use a and b as parameter.')
629
    a = kwargs.get('x', a)  # For Backward capacity.
630 631 632 633 634 635
    b = kwargs.get('y', b)
    assert isinstance(a, LayerOutput)
    assert isinstance(b, LayerOutput)
    if a.size is not None and b.size is not None:
        assert a.size == b.size

636
    op = DotMulOperator(input_layer_names=[a.name, b.name], scale=scale)
637
    op.origin = [a, b]
638
    return op
639

640

641
@wrap_bias_attr_default(['padding_attr'])
642 643 644
def context_projection(input,
                       context_len,
                       context_start=None,
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
                       padding_attr=False):
    """
    Context Projection.

    It just simply reorganizes input sequence, combines "context_len" sequence
    to one context from context_start. "context_start" will be set to
    -(context_len - 1) / 2 by default. If context position out of sequence
    length, padding will be filled as zero if padding_attr = False, otherwise
    it is trainable.

    For example, origin sequence is [A B C D E F G], context len is 3, then
    after context projection and not set padding_attr, sequence will
    be [ 0AB ABC BCD CDE DEF EFG FG0 ].

    :param input: Input Sequence.
    :type input: LayerOutput
    :param context_len: context length.
    :type context_len: int
    :param context_start: context start position. Default is
                          -(context_len - 1)/2
    :type context_start: int
    :param padding_attr: Padding Parameter Attribute. If false, it means padding
                         always be zero. Otherwise Padding is learnable, and
                         parameter attribute is set by this parameter.
    :type padding_attr: bool|ParameterAttribute
    :return: Projection
    :rtype: Projection
    """
    context_start = -(
        context_len - 1) / 2 if context_start is None else context_start

    extra_dict = dict()
    trainable = isinstance(padding_attr, ParameterAttribute)
    if trainable:
        extra_dict = padding_attr.attr

681 682 683 684 685 686
    proj = ContextProjection(
        input_layer_name=input.name,
        context_length=context_len,
        context_start=context_start,
        trainable_padding=trainable,
        **extra_dict)
687 688 689 690 691 692 693 694 695 696 697 698 699
    proj.origin = input
    return proj


class MixedLayerType(LayerOutput):
    """
    The internal object for trainer_helpers.
    """

    class AddToSealedMixedLayerException(Exception):
        def __init__(self):
            Exception.__init__(self)

700
    def __init__(self, name, size, act, bias_attr, layer_attr, parents=None):
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
        """
        Ctor.
        :param name: layer name.
        :type name: basestring
        :param size: layer size.
        :type size: int
        :param act: activation type.
        :type act: BaseActivation
        :param bias_attr: The Bias Attribute. If no bias, then pass False or
                          something not type of ParameterAttribute. None will
                          get a default Bias.
        :type bias_attr: ParameterAttribute or None means has bias. Any other
                         type means no bias.
        :param layer_attr: Extra Layer Attribute.
        :type layer_attr: ExtraLayerAttribute or None
        """
717 718 719 720 721 722 723
        LayerOutput.__init__(
            self,
            name,
            LayerType.MIXED_LAYER,
            parents,
            size=size,
            activation=act)
724 725 726 727 728
        self.bias_attr = bias_attr
        self.layer_attr = layer_attr
        self.inputs = []
        self.finalized = False

729
    def __iadd__(self, other):
730 731 732 733 734 735 736 737
        """
        + += operator
        :param other: Other projection.
        :type other: Projection
        :return: self.
        :rtype: MixedLayerType
        """
        if not self.finalized:
738
            assert isinstance(other, Projection) or isinstance(other, Operator)
739
            self.inputs.append(other)
740 741 742 743
            if isinstance(other, Projection):
                self.parents.append(other.origin)
            else:
                self.parents.extend(other.origin)
744 745 746 747 748 749 750 751
            return self
        else:
            raise MixedLayerType.AddToSealedMixedLayerException()

    def __enter__(self):
        assert len(self.inputs) == 0
        return self

752
    def __exit__(self, exc_type, exc_value, tb):
753 754
        if exc_value is not None:
            raise exc_value
755
        assert len(self.inputs) != 0
756
        ml = MixedLayer(
757 758 759 760 761
            name=self.name,
            size=self.size,
            active_type=self.activation.name,
            bias=ParamAttr.to_bias(self.bias_attr),
            inputs=self.inputs,
762
            **ExtraLayerAttribute.to_kwargs(self.layer_attr))
763 764 765
        # update the size which might be computed inside MixedLayer
        # according to the operator's output size
        self.size = ml.config.size
766
        self.finalized = True
767 768 769 770 771 772


@wrap_name_default("mixed")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(ERROR_CLIPPING, DROPOUT)
773 774 775 776 777
def mixed_layer(size=0,
                input=None,
                name=None,
                act=None,
                bias_attr=False,
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
                layer_attr=None):
    """
    Mixed Layer. A mixed layer will add all inputs together, then activate.
    Each inputs is a projection or operator.

    There are two styles of usages.

    1. When not set inputs parameter, use mixed_layer like this:

    .. code-block:: python

       with mixed_layer(size=256) as m:
           m += full_matrix_projection(input=layer1)
           m += identity_projection(input=layer2)

    2. You can also set all inputs when invoke mixed_layer as follows:

    .. code-block:: python

       m = mixed_layer(size=256,
                       input=[full_matrix_projection(input=layer1),
                              full_matrix_projection(input=layer2)])

    :param name: mixed layer name. Can be referenced by other layer.
    :type name: basestring
    :param size: layer size.
    :type size: int
    :param input: inputs layer. It is an optional parameter. If set,
                  then this function will just return layer's name.
    :param act: Activation Type.
    :type act: BaseActivation
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :param layer_attr: The extra layer config. Default is None.
    :type layer_attr: ExtraLayerAttribute
    :return: MixedLayerType object can add inputs or layer name.
    :rtype: MixedLayerType
    """

    if input is None:
        return MixedLayerType(name, size, act, bias_attr, layer_attr)
    else:
822 823 824 825 826 827
        with mixed_layer(
                name=name,
                size=size,
                act=act,
                bias_attr=bias_attr,
                layer_attr=layer_attr) as m:
828
            if isinstance(input, collections.Sequence):
829 830 831 832 833 834 835 836
                for each in input:
                    m += each
            else:
                m += input
        return m


@layer_support()
837
def data_layer(name, size, height=None, width=None, layer_attr=None):
838 839 840 841 842 843 844
    """
    Define DataLayer For NeuralNetwork.

    The example usage is:

    ..  code-block:: python

Y
Yu Yang 已提交
845
        data = data_layer(name="input", size=1000)
846 847 848 849 850

    :param name: Name of this data layer.
    :type name: basestring
    :param size: Size of this data layer.
    :type size: int
851
    :param height: Height of this data layer, used for image
Y
Yu Yang 已提交
852
    :type height: int|None
853
    :param width: Width of this data layer, used for image
Y
Yu Yang 已提交
854
    :type width: int|None
855 856
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
857
    :return: LayerOutput object.
858 859
    :rtype: LayerOutput
    """
860 861 862 863
    Layer(
        type=LayerType.DATA,
        name=name,
        size=size,
864 865
        height=height,
        width=width,
866
        **ExtraLayerAttribute.to_kwargs(layer_attr))
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

    return LayerOutput(name, LayerType.DATA, size=size)


@wrap_name_default("embedding")
@wrap_param_attr_default()
@layer_support(ERROR_CLIPPING)
def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
    """
    Define a embedding Layer.

    :param name: Name of this embedding layer.
    :type name: basestring
    :param input: The input layer for this embedding. NOTE: must be Index Data.
    :type input: LayerOutput
    :param size: The embedding dimension.
    :type size: int
    :param param_attr: The embedding parameter attribute. See ParameterAttribute
                      for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer Config. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
889
    :return: LayerOutput object.
890 891
    :rtype: LayerOutput
    """
892 893 894 895 896 897
    with mixed_layer(
            name=name,
            size=size,
            act=LinearActivation(),
            bias_attr=False,
            layer_attr=layer_attr) as mix:
898 899 900 901 902 903 904 905 906
        mix += table_projection(input=input, size=size, param_attr=param_attr)
    return mix


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
@layer_support(ERROR_CLIPPING, DROPOUT)
907 908 909 910 911 912 913
def fc_layer(input,
             size,
             act=None,
             name=None,
             param_attr=None,
             bias_attr=None,
             layer_attr=None):
914 915 916 917 918 919 920 921 922 923 924 925
    """
    Helper for declare fully connected layer.

    The example usage is:

    .. code-block:: python

       fc = fc_layer(input=layer,
                     size=1024,
                     act=LinearActivation(),
                     bias_attr=False)

926
    which is equal to:
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

    .. code-block:: python

       with mixed_layer(size=1024) as fc:
           fc += full_matrix_projection(input=layer)

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
949
    :return: LayerOutput object.
950 951 952 953
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
954
        assert not isinstance(param_attr, collections.Sequence)
955 956
        param_attr = [param_attr]
    else:
957
        if isinstance(param_attr, collections.Sequence):
958 959 960 961
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

962
    assert isinstance(input, collections.Sequence)
963 964

    Layer(
965 966 967
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ],
968 969 970 971 972
        name=name,
        type=LayerType.FC_LAYER,
        size=size,
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
973 974 975
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.FC_LAYER, input, activation=act, size=size)
976

977

978
@wrap_name_default("print")
979
def printer_layer(input, name=None):
980 981
    """
    Print the output value of input layers. This layer is useful for debugging.
982 983 984 985 986

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer. Could be a list/tuple of input layer.
    :type input: LayerOutput|list|tuple
987
    :return: LayerOutput
988
    """
989 990 991 992 993
    if isinstance(input, LayerOutput):
        input = [input]
    assert isinstance(input, collections.Sequence)  # list or tuple
    for each in input:
        assert isinstance(each, LayerOutput)
994 995 996 997

    Layer(
        name=name,
        type=LayerType.PRINT_LAYER,
998
        inputs=[l.name for l in input], )
999
    # this layer don't return anything, can not be input of other layer.
1000

1001 1002 1003 1004 1005 1006 1007
# Keep print_layer for compatibility with V1 API.
# 'print_layer' does not work for V2 API because it will be changed to
# 'print' for V2 API. But 'print' is a reserved key word in python.


print_layer = printer_layer

1008

Y
yuan 已提交
1009
@wrap_name_default("priorbox")
G
gaoyuan 已提交
1010
def priorbox_layer(input,
1011
                   image,
G
gaoyuan 已提交
1012 1013 1014 1015 1016
                   aspect_ratio,
                   variance,
                   min_size,
                   max_size=[],
                   name=None):
Y
yuan 已提交
1017 1018 1019 1020 1021 1022 1023
    """
    Compute the priorbox and set the variance. This layer is necessary for ssd.

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
1024 1025
    :param image: The network input image.
    :type image: LayerOutput
Y
yuan 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    :param aspect_ratio: The aspect ratio.
    :type aspect_ratio: list
    :param variance: The bounding box variance.
    :type min_size: The min size of the priorbox width/height.
    :param min_size: list
    :type max_size: The max size of the priorbox width/height. Could be NULL.
    :param max_size: list
    :return: LayerOutput
    """
    # plus one for ratio 1.
    num_filters = (len(aspect_ratio) * 2 + 1 + len(max_size)) * 4
G
gaoyuan 已提交
1037
    size = (input.size / input.num_filters) * num_filters * 2
Y
yuan 已提交
1038 1039 1040
    Layer(
        name=name,
        type=LayerType.PRIORBOX_LAYER,
1041
        inputs=[input.name, image.name],
Y
yuan 已提交
1042 1043 1044 1045 1046 1047
        size=size,
        min_size=min_size,
        max_size=max_size,
        aspect_ratio=aspect_ratio,
        variance=variance)
    return LayerOutput(
G
gaoyuan 已提交
1048 1049
        name,
        LayerType.PRIORBOX_LAYER,
1050
        parents=[input, image],
G
gaoyuan 已提交
1051 1052 1053
        num_filters=num_filters,
        size=size)

1054

1055 1056
@wrap_name_default("cross_channel_norm")
def cross_channel_norm_layer(input, name=None, param_attr=None):
G
gaoyuan 已提交
1057 1058 1059 1060 1061
    """
    Normalize a layer's output. This layer is necessary for ssd.
    This layer applys normalize across the channels of each sample to
    a conv layer's output and scale the output by a group of trainable
    factors which dimensions equal to the channel's number.
G
gaoyuan 已提交
1062

G
gaoyuan 已提交
1063 1064 1065 1066 1067 1068 1069 1070
    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
    :return: LayerOutput
    """
1071
    assert input.num_filters is not None
G
gaoyuan 已提交
1072 1073
    Layer(
        name=name,
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        type=LayerType.NORM_LAYER,
        inputs=[
            Input(
                input.name,
                norm=Norm(
                    norm_type="cross-channel-norm",
                    channels=input.num_filters,
                    size=input.size,
                    scale=0,
                    pow=0,
                    blocked=0),
                **param_attr.attr)
        ])
G
gaoyuan 已提交
1087 1088
    return LayerOutput(
        name,
1089
        LayerType.NORM_LAYER,
G
gaoyuan 已提交
1090 1091 1092 1093 1094
        parents=input,
        num_filters=input.num_filters,
        size=input.size)


1095 1096 1097 1098
@wrap_name_default("seq_pooling")
@wrap_bias_attr_default(has_bias=False)
@wrap_param_default(['pooling_type'], default_factory=lambda _: MaxPooling())
@layer_support()
1099 1100 1101 1102
def pooling_layer(input,
                  pooling_type=None,
                  name=None,
                  bias_attr=None,
1103
                  agg_level=AggregateLevel.TO_NO_SEQUENCE,
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
                  layer_attr=None):
    """
    Pooling layer for sequence inputs, not used for Image.

    The example usage is:

    .. code-block:: python

       seq_pool = pooling_layer(input=layer,
                                pooling_type=AvgPooling(),
1114
                                agg_level=AggregateLevel.TO_NO_SEQUENCE)
1115

1116 1117
    :param agg_level: AggregateLevel.TO_NO_SEQUENCE or
                      AggregateLevel.TO_SEQUENCE
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    :type agg_level: AggregateLevel
    :param name: layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param pooling_type: Type of pooling, MaxPooling(default), AvgPooling,
                         SumPooling, SquareRootNPooling.
    :type pooling_type: BasePoolingType|None
    :param bias_attr: Bias parameter attribute. False if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: The Extra Attributes for layer, such as dropout.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1130
    :return: LayerOutput object.
1131
    :rtype: LayerOutput
1132 1133
    """
    extra_dict = dict()
1134
    # noinspection PyUnresolvedReferences
1135 1136
    if isinstance(pooling_type, AvgPooling):
        extra_dict['average_strategy'] = pooling_type.strategy
1137 1138 1139 1140
    elif isinstance(pooling_type, MaxPooling) and \
                    pooling_type.output_max_index is not None:
        assert isinstance(pooling_type.output_max_index, bool)
        extra_dict['output_max_index'] = pooling_type.output_max_index
1141 1142 1143 1144 1145 1146 1147 1148
    extra_dict.update(ExtraLayerAttribute.to_kwargs(layer_attr))

    Layer(
        name=name,
        type=pooling_type.name,
        inputs=[Input(input.name)],
        bias=ParamAttr.to_bias(bias_attr),
        trans_type=agg_level,
1149
        **extra_dict)
1150

1151 1152
    return LayerOutput(
        name, pooling_type.name, parents=[input], size=input.size)
1153

Q
qijun 已提交
1154

1155 1156
@wrap_bias_attr_default()
@wrap_param_attr_default()
1157
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
1158 1159 1160
@wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation())
@wrap_name_default("lstmemory")
@layer_support(DROPOUT)
1161 1162 1163 1164 1165 1166 1167 1168 1169
def lstmemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              state_act=None,
              bias_attr=None,
              param_attr=None,
1170 1171 1172 1173 1174 1175 1176 1177
              layer_attr=None):
    """
    Long Short-term Memory Cell.

    The memory cell was implemented as follow equations.

    ..  math::

1178
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
1179

1180
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
1181

1182
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
1183

1184
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
1185

1186
        h_t & = o_t tanh(c_t)
1187 1188


1189
    NOTE: In PaddlePaddle's implementation, the multiplications
1190
    :math:`W_{xi}x_{t}` , :math:`W_{xf}x_{t}`,
1191 1192 1193 1194
    :math:`W_{xc}x_t`, :math:`W_{xo}x_{t}` are not done in the lstmemory layer,
    so an additional mixed_layer with full_matrix_projection or a fc_layer must
    be included in the configuration file to complete the input-to-hidden
    mappings before lstmemory is called.
1195

1196
    NOTE: This is a low level user interface. You can use network.simple_lstm
1197 1198
    to config a simple plain lstm layer.

1199 1200 1201 1202
    Please refer to **Generating Sequences With Recurrent Neural Networks** for
    more details about LSTM.

    Link_ goes as below.
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: The lstmemory layer name.
    :type name: basestring
    :param input: input layer name.
    :type input: LayerOutput
    :param reverse: is sequence process reversed or not.
    :type reverse: bool
    :param act: activation type, TanhActivation by default. :math:`h_t`
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
    :type gate_act: BaseActivation
    :param state_act: state activation type, TanhActivation by default.
    :type state_act: BaseActivation

    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
1226
    :return: LayerOutput object.
1227 1228 1229 1230 1231 1232
    :rtype: LayerOutput
    """

    assert gate_act.support_hppl
    assert state_act.support_hppl
    assert act.support_hppl
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
    assert input.size is not None and input.size % 4 == 0
    if size is not None:
        if input.size / 4 == size:
            plog = logger.warning
        else:
            plog = logger.fatal

        plog("NOTE: The lstmemory layer[%s]'s size is set by previous input "
             "layer. The lstm size should be equal with input layer size/4. The"
             " size which is set explicitly will be ignored." % name)
1243

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
    Layer(
        name=name,
        type=LayerType.LSTMEMORY,
        active_type=act.name,
        active_state_type=state_act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
1254

1255 1256 1257 1258 1259
    return LayerOutput(
        name,
        LayerType.LSTMEMORY, [input],
        size=input.size / 4,
        reverse=reverse)
1260

1261 1262 1263

@wrap_bias_attr_default()
@wrap_param_attr_default()
1264
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
1265 1266 1267
@wrap_act_default(param_names=["act"], act=TanhActivation())
@wrap_name_default("gru")
@layer_support(DROPOUT)
1268 1269 1270 1271 1272 1273 1274 1275
def grumemory(input,
              name=None,
              reverse=False,
              act=None,
              gate_act=None,
              size=None,
              bias_attr=None,
              param_attr=None,
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
              layer_attr=None):
    """
    Gate Recurrent Unit Layer.

    The memory cell was implemented as follow equations.

    1. update gate :math:`z`: defines how much of the previous memory to
    keep around or the unit updates its activations. The update gate
    is computed by:

    ..  math::

        z_t = \\sigma(W_{z}x_{t} + U_{z}h_{t-1} + b_z)

    2. reset gate :math:`r`: determines how to combine the new input with the
    previous memory. The reset gate is computed similarly to the update gate:

    ..  math::

        r_t = \\sigma(W_{r}x_{t} + U_{r}h_{t-1} + b_r)

1297 1298
    3. The candidate activation :math:`\\tilde{h_t}` is computed similarly to
    that of the traditional recurrent unit:
1299 1300 1301 1302 1303

    ..  math::

        {\\tilde{h_t}} = tanh(W x_{t} + U (r_{t} \odot h_{t-1}) + b)

1304 1305 1306
    4. The hidden activation :math:`h_t` of the GRU at time t is a linear
    interpolation between the previous activation :math:`h_{t-1}` and the
    candidate activation :math:`\\tilde{h_t}`:
1307 1308 1309 1310 1311

    ..  math::

        h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}}

1312
    NOTE: In PaddlePaddle's implementation, the multiplication operations
1313
    :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in
1314 1315 1316
    gate_recurrent layer. Consequently, an additional mixed_layer with
    full_matrix_projection or a fc_layer must be included before grumemory
    is called.
1317

1318 1319 1320
    More details can be found by referring to `Empirical Evaluation of Gated
    Recurrent Neural Networks on Sequence Modeling.
    <https://arxiv.org/abs/1412.3555>`_
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331

    The simple usage is:

    .. code-block:: python

       gru = grumemory(input)

    :param name: The gru layer name.
    :type name: None|basestring
    :param input: input layer.
    :type input: LayerOutput.
1332
    :param reverse: Whether sequence process is reversed or not.
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    :type reverse: bool
    :param act: activation type, TanhActivation by default. This activation
                affects the :math:`{\\tilde{h_t}}`.
    :type act: BaseActivation
    :param gate_act: gate activation type, SigmoidActivation by default.
                     This activation affects the :math:`z_t` and :math:`r_t`. It is the
                     :math:`\\sigma` in the above formula.
    :type gate_act: BaseActivation
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param param_attr: Parameter Attribute.
    :type param_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer attribute
    :type layer_attr: ExtraLayerAttribute|None
1348 1349 1350
    :param size: Stub parameter of size, but actually not used. If set this size
                 will get a warning.
    :type size: None
D
dangqingqing 已提交
1351
    :return: LayerOutput object.
1352 1353 1354 1355
    :rtype: LayerOutput
    """
    assert act.support_hppl
    assert gate_act.support_hppl
1356 1357 1358 1359 1360 1361 1362 1363 1364
    assert input.size is not None and input.size % 3 == 0
    if size is not None:
        if input.size / 3 == size:
            plog = logger.warning
        else:
            plog = logger.fatal
        plog("NOTE: the gru memory layer's size is set by previous input layer,"
             " and should be input size / 3. Set size explicitly will be "
             "ignored.")
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374
    Layer(
        name=name,
        type=LayerType.GRUMEMORY,
        active_type=act.name,
        active_gate_type=gate_act.name,
        reversed=reverse,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=[Input(input.name, **param_attr.attr)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
1375

1376 1377 1378 1379 1380
    return LayerOutput(
        name,
        LayerType.GRUMEMORY, [input],
        size=input.size / 3,
        reverse=reverse)
1381

1382 1383 1384

@wrap_name_default()
@layer_support()
1385 1386
def last_seq(input,
             name=None,
1387
             agg_level=AggregateLevel.TO_NO_SEQUENCE,
1388
             stride=-1,
1389 1390 1391 1392
             layer_attr=None):
    """
    Get Last Timestamp Activation of a sequence.

1393 1394 1395
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the last value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1396
    of stride is -1.
1397

L
Luo Tao 已提交
1398 1399 1400 1401 1402 1403
    The simple usage is:

    .. code-block:: python

       seq = last_seq(input=layer)

1404 1405 1406 1407 1408
    :param agg_level: Aggregated level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1409
    :param stride: window size.
1410
    :type stride: Int
1411 1412
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1413
    :return: LayerOutput object.
1414 1415
    :rtype: LayerOutput
    """
1416 1417 1418 1419 1420 1421
    if input.reverse is not None and input.reverse:
        logger.warning("You are getting the last instance of a sequence that"
                       " is a output of a REVERSED layer. There is no time"
                       " series information at all. Maybe you want to use"
                       " first_seq instead.")

1422
    if agg_level == AggregateLevel.TO_SEQUENCE:
1423 1424
        assert stride == -1

1425 1426 1427 1428 1429
    Layer(
        name=name,
        type=LayerType.SEQUENCE_LAST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1430
        stride=stride,
1431 1432 1433 1434 1435 1436
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_LAST_INSTANCE,
        parents=[input],
        size=input.size)
1437 1438 1439 1440


@wrap_name_default()
@layer_support()
1441 1442
def first_seq(input,
              name=None,
1443
              agg_level=AggregateLevel.TO_NO_SEQUENCE,
1444
              stride=-1,
1445 1446 1447 1448
              layer_attr=None):
    """
    Get First Timestamp Activation of a sequence.

1449 1450 1451
    If stride > 0, this layer slides a window whose size is determined by stride,
    and return the first value of the window as the output. Thus, a long sequence
    will be shorten. Note that for sequence with sub-sequence, the default value
L
Luo Tao 已提交
1452
    of stride is -1.
1453

L
Luo Tao 已提交
1454 1455 1456 1457 1458 1459
    The simple usage is:

    .. code-block:: python

       seq = first_seq(input=layer)

1460 1461 1462 1463 1464
    :param agg_level: aggregation level
    :param name: Layer name.
    :type name: basestring
    :param input: Input layer name.
    :type input: LayerOutput
1465
    :param stride: window size.
1466
    :type stride: Int
1467 1468
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1469
    :return: LayerOutput object.
1470 1471
    :rtype: LayerOutput
    """
1472 1473 1474 1475 1476 1477 1478

    if input.reverse is not None and not input.reverse:
        logger.warning('You are getting the first instance for a time series,'
                       ' and it is a normal recurrent layer output. There is no'
                       ' time series information at all. Maybe you want to use'
                       ' last_seq instead.')

1479
    if agg_level == AggregateLevel.TO_SEQUENCE:
1480 1481
        assert stride == -1

1482 1483 1484 1485 1486
    Layer(
        name=name,
        type=LayerType.SEQUENCE_FIRST_INSTANCE,
        inputs=[input.name],
        trans_type=agg_level,
1487
        stride=stride,
1488 1489 1490 1491 1492 1493
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEQUENCE_FIRST_INSTANCE,
        parents=[input],
        size=input.size)
1494 1495 1496


class ExpandLevel(object):
1497 1498 1499 1500 1501
    """
    Please refer to AggregateLevel first.

    ExpandLevel supports two modes:

1502 1503
    - :code:`ExpandLevel.FROM_NO_SEQUENCE` means the expansion acts on
      :code:`NO_SEQUENCE`, which will be expanded to
1504 1505
      :code:`SEQUENCE` or :code:`SUB_SEQUENCE`.

1506 1507
    - :code:`ExpandLevel.FROM_SEQUENCE` means the expansion acts on
      :code:`SEQUENCE`, which will be expanded to
1508 1509
      :code:`SUB_SEQUENCE`.
    """
1510 1511
    FROM_NO_SEQUENCE = AggregateLevel.TO_NO_SEQUENCE
    FROM_SEQUENCE = AggregateLevel.TO_SEQUENCE
1512 1513
    # compatible with previous configuration
    FROM_TIMESTEP = FROM_NO_SEQUENCE
1514

1515

1516 1517
@wrap_name_default()
@layer_support()
1518 1519
def expand_layer(input,
                 expand_as,
1520 1521
                 name=None,
                 bias_attr=False,
1522
                 expand_level=ExpandLevel.FROM_NO_SEQUENCE,
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
                 layer_attr=None):
    """
    A layer for "Expand Dense data or (sequence data where the length of each
    sequence is one) to sequence data."

    The example usage is:

    .. code-block:: python

       expand = expand_layer(input=layer1,
                             expand_as=layer2,
1534
                             expand_level=ExpandLevel.FROM_NO_SEQUENCE)
1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548

    :param input: Input layer
    :type input: LayerOutput
    :param expand_as: Expand as this layer's sequence info.
    :type expand_as: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param bias_attr: Bias attribute. None means default bias. False means no
                      bias.
    :type bias_attr: ParameterAttribute|None|False
    :param expand_level: whether input layer is timestep(default) or sequence.
    :type expand_level: ExpandLevel
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1549
    :return: LayerOutput object.
1550 1551 1552 1553 1554 1555 1556 1557 1558
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name, expand_as.name],
        name=name,
        bias=ParamAttr.to_bias(bias_attr=bias_attr),
        type=LayerType.EXPAND_LAYER,
        trans_type=expand_level,
1559 1560 1561 1562 1563 1564
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=input.size,
        layer_type=LayerType.EXPAND_LAYER,
        parents=[input, expand_as])
1565 1566


1567
@wrap_name_default()
1568
@wrap_act_default(act=IdentityActivation())
1569
@layer_support()
1570 1571 1572
def repeat_layer(input,
                 num_repeats,
                 as_row_vector=True,
1573
                 act=None,
1574 1575
                 name=None,
                 layer_attr=None):
1576
    """
1577
    A layer for repeating the input for num_repeats times.
1578

1579
    If as_row_vector:
1580
    .. math::
1581 1582 1583 1584 1585
       y  = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
    If not as_row_vector:
    .. math::
       y  = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]

1586 1587 1588 1589 1590

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
1591
       expand = repeat_layer(input=layer, num_repeats=4)
1592 1593 1594 1595 1596 1597

    :param input: Input layer
    :type input: LayerOutput
    :param num_repeats: Repeat the input so many times
    :type num_repeats: int
    :param name: Layer name.
1598 1599 1600 1601 1602 1603
    :param as_row_vector: True for treating input as row vector and repeating
                          in the column direction.  This is equivalent to apply
                          concat_layer() with num_repeats same input.
                          False for treating input as column vector and repeating
                          in the row direction.
    :type as_row_vector: bool
1604 1605
    :param act: Activation type.
    :type act: BaseActivation
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    l = Layer(
        inputs=[input.name],
        name=name,
1616
        active_type=act.name,
1617
        num_filters=num_repeats,
1618
        as_row_vector=as_row_vector,
1619
        type=LayerType.FEATURE_MAP_EXPAND_LAYER,
1620 1621 1622 1623 1624
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=l.config.size,
        layer_type=LayerType.FEATURE_MAP_EXPAND_LAYER,
1625
        activation=act,
1626 1627
        parents=[input])

1628

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
@wrap_name_default("seqreshape")
@wrap_act_default(act=IdentityActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support()
def seq_reshape_layer(input,
                      reshape_size,
                      act=None,
                      name=None,
                      layer_attr=None,
                      bias_attr=None):
    """
    A layer for reshaping the sequence. Assume the input sequence has T instances,
1641
    the dimension of each instance is M, and the input reshape_size is N, then the
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    output sequence has T*M/N instances, the dimension of each instance is N.

    Note that T*M/N must be an integer.

    The example usage is:

    .. code-block:: python

       reshape = seq_reshape_layer(input=layer, reshape_size=4)

    :param input: Input layer.
    :type input: LayerOutput
    :param reshape_size: the size of reshaped sequence.
    :type reshape_size: int
    :param name: Layer name.
    :type name: basestring
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    Layer(
        inputs=[input.name],
        name=name,
        size=reshape_size,
        type=LayerType.SEQUENCE_RESHAPE,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        size=reshape_size,
        layer_type=LayerType.SEQUENCE_RESHAPE,
        parents=[input])


1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
@wrap_name_default()
@layer_support()
def interpolation_layer(input, weight, name=None, layer_attr=None):
    """
    This layer is for linear interpolation with two inputs,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y.row[i] = w[i] * x_1.row[i] + (1 - w[i]) * x_2.row[i]

    where :math:`x_1` and :math:`x_2` are two (batchSize x dataDim) inputs,
    :math:`w` is (batchSize x 1) weight vector, and :math:`y` is
    (batchSize x dataDim) output.

    The example usage is:

    .. code-block:: python

       interpolation = interpolation_layer(input=[layer1, layer2], weight=layer3)

    :param input: Input layer.
    :type input: list|tuple
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1712
    :return: LayerOutput object.
1713 1714
    :rtype: LayerOutput
    """
1715
    assert isinstance(input, collections.Sequence)
1716
    assert len(input) == 2
1717 1718 1719 1720 1721 1722 1723
    assert isinstance(input[0], LayerOutput) and isinstance(input[1],
                                                            LayerOutput)
    if input[0].size is not None and input[1].size is not None:
        assert input[0].size == input[1].size
    assert isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
1724 1725 1726 1727
    Layer(
        name=name,
        type=LayerType.INTERPOLATION_LAYER,
        inputs=[weight.name, input[0].name, input[1].name],
1728 1729 1730 1731 1732 1733
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.INTERPOLATION_LAYER,
        parents=[weight, input[0], input[1]],
        size=input[0].size)
1734 1735


1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
@wrap_name_default()
@layer_support()
def bilinear_interp_layer(input,
                          out_size_x=None,
                          out_size_y=None,
                          name=None,
                          layer_attr=None):
    """
    This layer is to implement bilinear interpolation on conv layer output.

    Please refer to Wikipedia: https://en.wikipedia.org/wiki/Bilinear_interpolation

    The simple usage is:

    .. code-block:: python

L
liaogang 已提交
1752
       bilinear = bilinear_interp_layer(input=layer1, out_size_x=64, out_size_y=64)
X
xuwei06 已提交
1753

L
liaogang 已提交
1754
    :param   input:        A input layer.
1755
    :type    input:        LayerOutput.
L
liaogang 已提交
1756
    :param   out_size_x:   bilinear interpolation output width.
X
xuwei06 已提交
1757
    :type    out_size_x:   int|None
L
liaogang 已提交
1758
    :param   out_size_y:   bilinear interpolation output height.
1759
    :type    out_size_y:   int|None
L
liaogang 已提交
1760
    :param   name:         The layer's name, which cna not be specified.
1761
    :type    name:         None|basestring
L
liaogang 已提交
1762
    :param   layer_attr:   Extra Layer attribute.
1763 1764 1765 1766 1767 1768 1769
    :type    layer_attr:   ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype:  LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert out_size_x > 0 and out_size_y > 0
L
liaogang 已提交
1770
    assert input.num_filters is not None
L
liaogang 已提交
1771
    num_channels = input.num_filters
1772 1773 1774 1775 1776 1777 1778
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            bilinear_interp=BilinearInterp(
                out_size_x=out_size_x,
                out_size_y=out_size_y,
1779
                channels=num_channels)),
1780 1781 1782 1783 1784 1785 1786 1787 1788
        type=LayerType.BILINEAR_INTERP_LAYER,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.BILINEAR_INTERP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)

1789

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
@wrap_name_default()
@layer_support()
def power_layer(input, weight, name=None, layer_attr=None):
    """
    This layer applies a power function to a vector element-wise,
    which is used in NEURAL TURING MACHINE.

    .. math::
       y = x^w

    where :math:`x` is a input vector, :math:`w` is scalar weight,
    and :math:`y` is a output vector.

    The example usage is:

    .. code-block:: python

       power = power_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1817
    :return: LayerOutput object.
1818 1819
    :rtype: LayerOutput
    """
1820 1821 1822
    assert isinstance(input, LayerOutput) and isinstance(weight, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
1823 1824 1825
    Layer(
        name=name,
        type=LayerType.POWER_LAYER,
1826
        inputs=[weight.name, input.name],
1827 1828 1829
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.POWER_LAYER, parents=[input, weight], size=input.size)
1830 1831 1832 1833 1834 1835


@wrap_name_default()
@layer_support()
def scaling_layer(input, weight, name=None, layer_attr=None):
    """
1836
    A layer for multiplying input vector by weight scalar.
1837 1838

    .. math::
1839
       y  = w x
1840

1841 1842 1843 1844 1845
    where :math:`x` is size=dataDim input, :math:`w` is size=1 weight,
    and :math:`y` is size=dataDim output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860

    The example usage is:

    .. code-block:: python

       scale = scaling_layer(input=layer1, weight=layer2)

    :param input: Input layer.
    :type input: LayerOutput
    :param weight: Weight layer.
    :type weight: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1861
    :return: LayerOutput object.
1862 1863
    :rtype: LayerOutput
    """
1864 1865 1866
    assert isinstance(weight, LayerOutput) and isinstance(input, LayerOutput)
    if weight.size is not None:
        assert weight.size == 1
1867 1868 1869 1870
    Layer(
        name=name,
        type=LayerType.SCALING_LAYER,
        inputs=[weight.name, input.name],
1871 1872 1873
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SCALING_LAYER, parents=[weight, input], size=input.size)
1874 1875 1876 1877 1878 1879


@wrap_name_default()
@layer_support()
def trans_layer(input, name=None, layer_attr=None):
    """
1880
    A layer for transposing a minibatch matrix.
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898

    .. math::
       y = x^\mathrm{T}

    where :math:`x` is (M x N) input, and :math:`y` is (N x M) output.

    The example usage is:

    .. code-block:: python

       trans = trans_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
1899
    :return: LayerOutput object.
1900 1901 1902 1903 1904 1905
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.TRANS_LAYER,
        inputs=[input.name],
1906 1907 1908
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TRANS_LAYER, parents=[input], size=input.size)
1909 1910


1911 1912
@wrap_name_default()
@layer_support()
1913
def rotate_layer(input, height, width, name=None, layer_attr=None):
1914
    """
H
Haonan 已提交
1915 1916
    A layer for rotating 90 degrees (clock-wise) for each feature channel,
    usually used when the input sample is some image or feature map.
1917 1918

    .. math::
1919
       y(j,i,:) = x(M-i-1,j,:)
1920

1921
    where :math:`x` is (M x N x C) input, and :math:`y` is (N x M x C) output.
1922 1923 1924 1925 1926 1927

    The example usage is:

    .. code-block:: python

       rot = rotate_layer(input=layer,
1928 1929
                          height=100,
                          width=100)
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942

    :param input: Input layer.
    :type input: LayerOutput
    :param height: The height of the sample matrix
    :type height: int
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
H
Haonan 已提交
1943 1944 1945
    l = Layer(
        name=name,
        height=height,
1946
        width=width,
H
Haonan 已提交
1947 1948 1949 1950 1951 1952 1953 1954
        type=LayerType.ROTATE_LAYER,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.ROTATE_LAYER,
        parents=[input],
        size=l.config.size)
1955 1956


1957 1958
@wrap_name_default()
@layer_support()
1959
def cos_sim(a, b, scale=1, size=1, name=None, layer_attr=None):
1960 1961 1962 1963
    """
    Cosine Similarity Layer. The cosine similarity equation is here.

    ..  math::
D
dangqingqing 已提交
1964
        similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
1965 1966 1967 1968 1969
        \\over \\|\\mathbf{a}\\| \\|\\mathbf{b}\\|}

    The size of a is M, size of b is M*N,
    Similarity will be calculated N times by step M. The output size is
    N. The scale will be multiplied to similarity.
1970

1971 1972
    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
1973

L
Luo Tao 已提交
1974 1975 1976 1977 1978 1979
    The example usage is:

    .. code-block:: python

       cos = cos_sim(a=layer1, b=layer2, size=3)

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
    :param name: layer name
    :type name: basestring
    :param a: input layer a
    :type a: LayerOutput
    :param b: input layer b
    :type b: LayerOutput
    :param scale: scale for cosine value. default is 5.
    :type scale: float
    :param size: layer size. NOTE size_a * size should equal size_b.
    :type size: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
1992
    :return: LayerOutput object.
1993 1994
    :rtype: LayerOutput
    """
1995
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
1996 1997 1998 1999 2000 2001
    if size == 1:
        Layer(
            name=name,
            type=LayerType.COSINE_SIM,
            cos_scale=scale,
            inputs=[a.name, b.name],
2002
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2003
    else:
2004 2005
        if a.size is not None and b.size is not None:
            assert size == b.size / a.size
2006 2007 2008 2009 2010 2011
        Layer(
            name=name,
            type=LayerType.COSINE_SIM_VEC,
            size=size,
            cos_scale=scale,
            inputs=[a.name, b.name],
2012
            **ExtraLayerAttribute.to_kwargs(layer_attr))
2013
    return LayerOutput(name, LayerType.COSINE_SIM, parents=[a, b], size=size)
2014

2015

2016 2017
@wrap_name_default()
@wrap_bias_attr_default(has_bias=True)
2018
@wrap_param_attr_default()
2019
@layer_support()
2020 2021
def hsigmoid(input,
             label,
2022
             num_classes=None,
2023 2024 2025 2026
             name=None,
             bias_attr=None,
             param_attr=None,
             layer_attr=None):
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
    """
    Organize the classes into a binary tree. At each node, a sigmoid function
    is used to calculate the probability of belonging to the right branch.
    This idea is from "F. Morin, Y. Bengio (AISTATS 05):
    Hierarchical Probabilistic Neural Network Language Model."

    The example usage is:

    ..  code-block:: python

        cost = hsigmoid(input=[layer1, layer2],
2038
                        label=data_layer)
2039 2040 2041 2042 2043 2044 2045

    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param label: Label layer.
    :type label: LayerOutput
    :param num_classes: number of classes.
2046
    :type num_classes: int|None
2047 2048
    :param name: layer name
    :type name: basestring
2049 2050 2051
    :param bias_attr: Bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
2052 2053
    :param param_attr: Parameter Attribute. None means default parameter.
    :type param_attr: ParameterAttribute|None
2054 2055
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2056
    :return: LayerOutput object.
2057 2058 2059 2060
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
2061 2062 2063 2064 2065 2066 2067 2068 2069
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr]
    else:
        if not isinstance(param_attr, collections.Sequence):
            param_attr = [param_attr] * len(input)
        else:
            assert len(param_attr) == len(input)

    assert isinstance(input, collections.Sequence)
2070 2071 2072
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA

2073 2074 2075 2076 2077
    if num_classes is None:
        num_classes = label.size
    if num_classes is None or num_classes <= 2:
        raise ValueError("hsigmoid label size must larger than 2.")

2078 2079
    ipts_for_layer = []
    parents = []
2080
    for each_input, each_param_attr in zip(input, param_attr):
2081
        assert isinstance(each_input, LayerOutput)
2082
        ipts_for_layer.append(Input(each_input.name, **each_param_attr.attr))
2083 2084 2085 2086
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

2087
    l = Layer(
2088 2089 2090 2091 2092
        name=name,
        type=LayerType.HSIGMOID,
        num_classes=num_classes,
        bias=ParamAttr.to_bias(bias_attr),
        inputs=ipts_for_layer,
2093 2094 2095
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
2096

2097

2098 2099 2100 2101 2102
@wrap_name_default("conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
def img_conv_layer(input,
                   filter_size,
                   num_filters,
                   name=None,
                   num_channels=None,
                   act=None,
                   groups=1,
                   stride=1,
                   padding=0,
                   bias_attr=None,
                   param_attr=None,
                   shared_biases=True,
                   layer_attr=None,
                   filter_size_y=None,
                   stride_y=None,
                   padding_y=None,
2119 2120
                   trans=False,
                   layer_type=None):
2121
    """
2122
    Convolution layer for image. Paddle can support both square and non-square
2123
    input currently.
2124 2125 2126 2127

    The details of convolution layer, please refer UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/
    FeatureExtractionUsingConvolution/>`_ .
X
xuwei06 已提交
2128

2129
    Convolution Transpose (deconv) layer for image. Paddle can support both square
2130
    and non-square input currently.
2131

X
xuwei06 已提交
2132
    The details of convolution transpose layer,
2133 2134 2135
    please refer to the following explanation and references therein
    <http://datascience.stackexchange.com/questions/6107/
    what-are-deconvolutional-layers/>`_ .
2136 2137 2138 2139
    The num_channel means input image's channel number. It may be 1 or 3 when
    input is raw pixels of image(mono or RGB), or it may be the previous layer's
    num_filters * num_group.

2140 2141 2142
    There are several group of filter in PaddlePaddle implementation.
    Each group will process some channel of the inputs. For example, if an input
    num_channel = 256, group = 4, num_filter=32, the PaddlePaddle will create
2143
    32*4 = 128 filters to process inputs. The channels will be split into 4
2144 2145
    pieces. First 256/4 = 64 channels will process by first 32 filters. The
    rest channels will be processed by rest group of filters.
2146

L
Luo Tao 已提交
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    The example usage is:

    ..  code-block:: python

        conv = img_conv_layer(input=data, filter_size=1, filter_size_y=1,
                              num_channels=8,
                              num_filters=16, stride=1,
                              bias_attr=False,
                              act=ReluActivation())

2157 2158 2159 2160
    :param name: Layer name.
    :type name: basestring
    :param input: Layer Input.
    :type input: LayerOutput
2161 2162 2163
    :param filter_size: The x dimension of a filter kernel. Or input a tuple for
                        two image dimension.
    :type filter_size: int|tuple|list
2164 2165 2166
    :param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
                        currently supports rectangular filters, the filter's
                        shape will be (filter_size, filter_size_y).
2167
    :type filter_size_y: int|None
2168 2169 2170 2171 2172
    :param num_filters: Each filter group's number of filter
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param groups: Group size of filters.
    :type groups: int
2173 2174 2175
    :param stride: The x dimension of the stride. Or input a tuple for two image
                   dimension.
    :type stride: int|tuple|list
2176 2177
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
2178 2179 2180
    :param padding: The x dimension of the padding. Or input a tuple for two
                    image dimension
    :type padding: int|tuple|list
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194
    :param padding_y: The y dimension of the padding.
    :type padding_y: int
    :param bias_attr: Convolution bias attribute. None means default bias.
                      False means no bias.
    :type bias_attr: ParameterAttribute|False
    :param num_channels: number of input channels. If None will be set
                        automatically from previous output.
    :type num_channels: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param shared_biases: Is biases will be shared between filters or not.
    :type shared_biases: bool
    :param layer_attr: Layer Extra Attribute.
    :type layer_attr: ExtraLayerAttribute
2195 2196
    :param trans: true if it is a convTransLayer, false if it is a convLayer
    :type trans: bool
2197
    :param layer_type: specify the layer_type, default is None. If trans=True,
2198 2199
                       layer_type has to be "exconvt" or "cudnn_convt",
                       otherwise layer_type has to be either "exconv" or
2200
                       "cudnn_conv"
2201
    :type layer_type: String
D
dangqingqing 已提交
2202
    :return: LayerOutput object.
2203 2204 2205 2206 2207
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
2208

2209
    if filter_size_y is None:
2210 2211 2212 2213 2214 2215
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

2216
    if stride_y is None:
2217 2218 2219 2220 2221 2222
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

2223
    if padding_y is None:
2224 2225 2226 2227 2228 2229 2230 2231
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
2232
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
2233 2234 2235 2236
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False
2237

2238 2239
    if layer_type:
        if trans:
2240
            assert layer_type in ["exconvt", "cudnn_convt"]
2241 2242 2243 2244 2245
        else:
            assert layer_type in ["exconv", "cudnn_conv"]
        lt = layer_type
    else:
        lt = LayerType.CONVTRANS_LAYER if trans else LayerType.CONV_LAYER
2246

2247
    l = Layer(
2248
        name=name,
2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
        inputs=Input(
            input.name,
            conv=Conv(
                filter_size=filter_size,
                padding=padding,
                stride=stride,
                channels=num_channels,
                groups=groups,
                filter_size_y=filter_size_y,
                padding_y=padding_y,
                stride_y=stride_y),
            **param_attr.attr),
2261 2262 2263 2264
        active_type=act.name,
        num_filters=num_filters,
        bias=ParamAttr.to_bias(bias_attr),
        shared_biases=shared_biases,
2265
        type=lt,
2266 2267 2268 2269 2270 2271 2272 2273
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        lt,
        parents=[input],
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
2274 2275 2276 2277


@wrap_name_default("pool")
@layer_support()
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
def img_pool_layer(input,
                   pool_size,
                   name=None,
                   num_channels=None,
                   pool_type=None,
                   stride=1,
                   padding=0,
                   layer_attr=None,
                   pool_size_y=None,
                   stride_y=None,
2288 2289
                   padding_y=None,
                   ceil_mode=True):
2290 2291 2292 2293 2294 2295 2296
    """
    Image pooling Layer.

    The details of pooling layer, please refer ufldl's pooling_ .

    .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/

L
Luo Tao 已提交
2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
    - ceil_mode=True:

    ..  math::

        w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    - ceil_mode=False:

    ..  math::

        w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride))
        h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y))

    The example usage is:

    ..  code-block:: python

        maxpool = img_pool_layer(input=conv,
                                 pool_size=3,
                                 pool_size_y=5,
                                 num_channels=8,
                                 stride=1,
                                 stride_y=2,
                                 padding=1,
                                 padding_y=2,
                                 pool_type=MaxPooling())

2325
    :param padding: pooling padding width.
2326
    :type padding: int
2327 2328
    :param padding_y: pooling padding height. It's equal to padding by default.
    :type padding_y: int|None
2329 2330 2331 2332
    :param name: name of pooling layer
    :type name: basestring.
    :param input: layer's input
    :type input: LayerOutput
2333
    :param pool_size: pooling window width
2334
    :type pool_size: int
2335 2336
    :param pool_size_y: pooling window height. It's eaqual to pool_size by default.
    :type pool_size_y: int|None
2337 2338
    :param num_channels: number of input channel.
    :type num_channels: int
2339
    :param pool_type: pooling type. MaxPooling or AvgPooling. Default is
2340 2341
                      MaxPooling.
    :type pool_type: BasePoolingType
2342
    :param stride: stride width of pooling.
2343
    :type stride: int
2344 2345
    :param stride_y: stride height of pooling. It is equal to stride by default.
    :type stride_y: int|None
2346 2347
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
2348 2349 2350 2351
    :param ceil_mode: Wether to use ceil mode to calculate output height and with.
                      Defalut is True. If set false, Otherwise use floor.

    :type ceil_mode: bool
D
dangqingqing 已提交
2352 2353
    :return: LayerOutput object.
    :rtype: LayerOutput
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

2364
    type_name = pool_type.name + '-projection' \
Y
Yu Yang 已提交
2365
        if (
2366
        isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
Y
Yu Yang 已提交
2367
        else pool_type.name
2368 2369 2370 2371 2372

    pool_size_y = pool_size if pool_size_y is None else pool_size_y
    stride_y = stride if stride_y is None else stride_y
    padding_y = padding if padding_y is None else padding_y

2373
    l = Layer(
2374 2375
        name=name,
        type=LayerType.POOL_LAYER,
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
        inputs=[
            Input(
                input.name,
                pool=Pool(
                    pool_type=type_name,
                    channels=num_channels,
                    size_x=pool_size,
                    start=None,
                    stride=stride,
                    padding=padding,
                    size_y=pool_size_y,
                    stride_y=stride_y,
2388
                    padding_y=padding_y))
2389
        ],
2390
        ceil_mode=ceil_mode,
2391 2392 2393 2394 2395 2396 2397
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.POOL_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)
2398 2399


Q
qijun 已提交
2400 2401
@wrap_name_default("spp")
@layer_support()
2402 2403 2404 2405 2406 2407
def spp_layer(input,
              name=None,
              num_channels=None,
              pool_type=None,
              pyramid_height=None,
              layer_attr=None):
Q
qijun 已提交
2408 2409 2410 2411 2412
    """
    Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
    The details please refer to
    `Kaiming He's paper <https://arxiv.org/abs/1406.4729>`_.

L
Luo Tao 已提交
2413 2414 2415 2416
    The example usage is:

    ..  code-block:: python

2417 2418 2419
        spp = spp_layer(input=data,
                        pyramid_height=2,
                        num_channels=16,
L
Luo Tao 已提交
2420 2421
                        pool_type=MaxPooling())

Q
qijun 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449
    :param name: layer name.
    :type name: basestring
    :param input: layer's input.
    :type input: LayerOutput
    :param num_channels: number of input channel.
    :type num_channels: int
    :param pool_type: Pooling type. MaxPooling or AveragePooling. Default is MaxPooling.
    :type scale: BasePoolingType
    :param pyramid_height: pyramid height.
    :type pyramid_height: int
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if pool_type is None:
        pool_type = MaxPooling()
    elif isinstance(pool_type, AvgPooling):
        pool_type.name = 'avg'

    type_name = pool_type.name
    if (isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)):
        type_name += '-projection'

2450
    l = Layer(
Q
qijun 已提交
2451 2452
        name=name,
        type=LayerType.SPP_LAYER,
2453 2454 2455 2456 2457
        inputs=Input(
            input.name,
            spp=SpatialPyramidPool(
                pool_type=type_name,
                channels=num_channels,
2458
                pyramid_height=pyramid_height)),
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.SPP_LAYER,
        parents=[input],
        num_filters=num_channels,
        size=l.config.size)


def __img_norm_layer__(name, input, size, norm_type, scale, power, num_channels,
                       blocked, layer_attr):
2470 2471 2472 2473
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

2474
    l = Layer(
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
        name=name,
        type=LayerType.NORM_LAYER,
        inputs=Input(
            input.name,
            norm=Norm(
                norm_type=norm_type,
                channels=num_channels,
                size=size,
                scale=scale,
                pow=power,
                blocked=blocked)),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.NORM_LAYER,
        parents=[input],
        num_filters=num_channels,
        img_norm_type=norm_type,
        size=l.config.size)
2494 2495 2496 2497


@wrap_name_default("crmnorm")
@layer_support()
2498 2499 2500 2501 2502 2503
def img_cmrnorm_layer(input,
                      size,
                      scale=0.0128,
                      power=0.75,
                      name=None,
                      num_channels=None,
2504
                      layer_attr=None):
2505
    """
2506
    Response normalization across feature maps.
D
dangqingqing 已提交
2507 2508
    The details please refer to
    `Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
2509

L
Luo Tao 已提交
2510 2511 2512
    The example usage is:

    ..  code-block:: python
2513

L
Luo Tao 已提交
2514 2515
        norm = img_cmrnorm_layer(input=net, size=5)

2516
    :param name: layer name.
D
dangqingqing 已提交
2517
    :type name: None|basestring
2518 2519
    :param input: layer's input.
    :type input: LayerOutput
2520
    :param size: Normalize in number of :math:`size` feature maps.
2521
    :type size: int
D
dangqingqing 已提交
2522
    :param scale: The hyper-parameter.
2523
    :type scale: float
D
dangqingqing 已提交
2524
    :param power: The hyper-parameter.
2525 2526 2527 2528 2529
    :type power: float
    :param num_channels: input layer's filers number or channels. If
                         num_channels is None, it will be set automatically.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2530
    :return: LayerOutput object.
2531 2532 2533
    :rtype: LayerOutput
    """
    return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
2534
                              power, num_channels, 0, layer_attr)
2535 2536 2537 2538 2539 2540 2541 2542


@wrap_bias_attr_default()
@wrap_param_attr_default(default_factory=lambda _: ParamAttr(initial_mean=1.0,
                                                             initial_std=0.))
@wrap_act_default(act=ReluActivation())
@wrap_name_default("batch_norm")
@layer_support(DROPOUT)
2543 2544 2545 2546 2547 2548 2549
def batch_norm_layer(input,
                     act=None,
                     name=None,
                     num_channels=None,
                     bias_attr=None,
                     param_attr=None,
                     layer_attr=None,
2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
                     batch_norm_type=None,
                     moving_average_fraction=0.9,
                     use_global_stats=None):
    """
    Batch Normalization Layer. The notation of this layer as follow.

    :math:`x` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    The details of batch normalization please refer to this
    `paper <http://arxiv.org/abs/1502.03167>`_.

L
Luo Tao 已提交
2571 2572 2573
    The example usage is:

    ..  code-block:: python
2574

L
Luo Tao 已提交
2575 2576
        norm = batch_norm_layer(input=net, act=ReluActivation())

2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
    :param name: layer name.
    :type name: basestring
    :param input: batch normalization input. Better be linear activation.
                Because there is an activation inside batch_normalization.
    :type input: LayerOutput
    :param batch_norm_type: We have batch_norm and cudnn_batch_norm. batch_norm
                            supports both CPU and GPU. cudnn_batch_norm requires
                            cuDNN version greater or equal to v4 (>=v4). But
                            cudnn_batch_norm is faster and needs less memory
                            than batch_norm. By default (None), we will
                            automaticly select cudnn_batch_norm for GPU and
                            batch_norm for CPU. Otherwise, select batch norm
                            type based on the specified type. If you use cudnn_batch_norm,
                            we suggested you use latest version, such as v5.1.
2591
    :type batch_norm_type: None|string, None or "batch_norm" or "cudnn_batch_norm"
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
    :param act: Activation Type. Better be relu. Because batch
                     normalization will normalize input near zero.
    :type act: BaseActivation
    :param num_channels: num of image channels or previous layer's number of
                         filters. None will automatically get from layer's
                         input.
    :type num_channels: int
    :param bias_attr: :math:`\\beta`, better be zero when initialize. So the
                      initial_std=0, initial_mean=1 is best practice.
    :type bias_attr: ParameterAttribute
    :param param_attr: :math:`\\gamma`, better be one when initialize. So the
                       initial_std=0, initial_mean=1 is best practice.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param use_global_stats: whether use moving mean/variance statistics
                             during testing peroid. If None or True,
                             it will use moving mean/variance statistics during
                             testing. If False, it will use the mean
                             and variance of current batch of test data for
                             testing.
    :type use_global_stats: bool|None.
    :param moving_average_fraction: Factor used in the moving average
                                   computation, referred to as facotr,
                                   :math:`runningMean = newMean*(1-factor)
                                   + runningMean*factor`
    :type moving_average_fraction: float.
D
dangqingqing 已提交
2619
    :return: LayerOutput object.
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
    :rtype: LayerOutput
    """
    if not isinstance(act, ReluActivation):
        logger.log(logging.WARN,
                   "%s is not recommend for batch normalization's activation, "
                   "maybe the relu is better" % act.name)

    if not isinstance(input.activation, LinearActivation):
        logger.log(logging.WARN,
                   "The activation should be inside batch normalization, the "
                   "previous layer's activation may be Linear")

    if num_channels is None:
        if input.num_filters is not None:
            num_channels = input.num_filters
        else:
            num_channels = input.size
    assert (batch_norm_type is None) or (batch_norm_type == "batch_norm") or \
           (batch_norm_type == "cudnn_batch_norm")
2639
    l = Layer(
2640
        name=name,
2641 2642
        inputs=Input(
            input.name, image=Image(channels=num_channels), **param_attr.attr),
2643 2644 2645 2646 2647 2648
        active_type=act.name,
        type=LayerType.BATCH_NORM_LAYER,
        batch_norm_type=batch_norm_type,
        bias=ParamAttr.to_bias(bias_attr),
        moving_average_fraction=moving_average_fraction,
        use_global_stats=use_global_stats,
2649
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2650

2651 2652 2653 2654 2655 2656 2657
    return LayerOutput(
        name=name,
        layer_type=LayerType.BATCH_NORM_LAYER,
        parents=[input],
        activation=act,
        num_filters=num_channels,
        size=l.config.size)
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684


@wrap_name_default()
@layer_support()
def sum_to_one_norm_layer(input, name=None, layer_attr=None):
    """
    A layer for sum-to-one normalization,
    which is used in NEURAL TURING MACHINE.

    .. math::
       out[i] = \\frac {in[i]} {\sum_{k=1}^N in[k]}

    where :math:`in` is a (batchSize x dataDim) input vector,
    and :math:`out` is a (batchSize x dataDim) output vector.

    The example usage is:

    .. code-block:: python

       sum_to_one_norm = sum_to_one_norm_layer(input=layer)

    :param input: Input layer.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
2685
    :return: LayerOutput object.
2686 2687 2688 2689 2690 2691
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SUM_TO_ONE_NORM_LAYER,
        inputs=[input.name],
2692 2693 2694
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SUM_TO_ONE_NORM_LAYER, parents=[input], size=input.size)
2695 2696 2697 2698 2699 2700


@wrap_name_default("addto")
@wrap_act_default(act=LinearActivation())
@wrap_bias_attr_default(has_bias=False)
@layer_support(DROPOUT)
2701
def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None):
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
    """
    AddtoLayer.

    ..  math::

        y = f(\\sum_{i} x_i + b)

    where :math:`y` is output, :math:`x` is input, :math:`b` is bias,
    and :math:`f` is activation function.

    The example usage is:

    ..  code-block:: python

        addto = addto_layer(input=[layer1, layer2],
                            act=ReluActivation(),
                            bias_attr=False)

    This layer just simply add all input layers together, then activate the sum
    inputs. Each input of this layer should be the same size, which is also the
    output size of this layer.

2724 2725 2726
    There is no weight matrix for each input, because it just a simple add
    operation. If you want a complicated operation before add, please use
    mixed_layer.
2727 2728

    It is a very good way to set dropout outside the layers. Since not all
2729 2730
    PaddlePaddle layer support dropout, you can add an add_to layer, set
    dropout here.
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
    Please refer to dropout_layer for details.

    :param name: Layer name.
    :type name: basestring
    :param input: Input layers. It could be a LayerOutput or list/tuple of
                 LayerOutput.
    :type input: LayerOutput|list|tuple
    :param act: Activation Type, default is tanh.
    :type act: BaseActivation
    :param bias_attr: Bias attribute. If False, means no bias. None is default
                      bias.
    :type bias_attr: ParameterAttribute|bool
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2745
    :return: LayerOutput object.
2746 2747 2748 2749 2750 2751
    :rtype: LayerOutput
    """
    num_filters = None
    if isinstance(input, LayerOutput):
        input = [input]

2752
    assert isinstance(input, collections.Sequence)
2753 2754 2755 2756 2757 2758 2759
    ipts_for_layer = []
    for each_input in input:
        assert isinstance(each_input, LayerOutput)
        ipts_for_layer.append(Input(each_input.name))
        if each_input.num_filters is not None:
            num_filters = each_input.num_filters

2760
    l = Layer(
2761 2762 2763
        name=name,
        type=LayerType.ADDTO_LAYER,
        inputs=ipts_for_layer,
2764 2765
        bias=ParamAttr.to_bias(bias_attr),
        active_type=act.name,
2766
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2767

2768 2769 2770 2771 2772 2773 2774
    return LayerOutput(
        name,
        LayerType.ADDTO_LAYER,
        parents=input,
        activation=act,
        num_filters=num_filters,
        size=l.config.size)
2775 2776 2777 2778 2779


@wrap_act_default(act=IdentityActivation())
@wrap_name_default("concat")
@layer_support()
2780
def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None):
2781 2782 2783 2784
    """
    Concat all input vector into one huge vector.
    Inputs can be list of LayerOutput or list of projection.

2785 2786 2787 2788 2789 2790
    The example usage is:

    ..  code-block:: python

        concat = concat_layer(input=[layer1, layer2])

2791 2792 2793
    :param name: Layer name.
    :type name: basestring
    :param input: input layers or projections
2794
    :type input: list|tuple|collections.Sequence
2795 2796 2797 2798
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
2799
    :return: LayerOutput object.
2800 2801 2802 2803 2804 2805 2806 2807
    :rtype: LayerOutput
    """

    if isinstance(input, LayerOutput):
        input = [input]
    elif isinstance(input, Projection):
        input = [input]
    else:
2808
        assert isinstance(input, collections.Sequence)
2809 2810

    def __is_type__(o, tp):
2811
        if not isinstance(o, collections.Sequence):
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
            if o == tp:
                return True
            elif len(o.__bases__) == 0:
                return False
            else:
                for bs in o.__bases__:
                    if __is_type__(bs, tp):
                        return True
                return False
        else:
            tmp = map(lambda _x: __is_type__(_x, tp), o)
            a = tmp[0]
            for b in tmp[1:]:
                assert a == b
            return a

    def __reduce_concat_type__(a, b):
        assert __is_type__([a, b], Projection) or __is_type__([a, b],
                                                              LayerOutput)
        return a

2833 2834
    is_concat_layer = __is_type__(
        reduce(__reduce_concat_type__, map(type, input)), LayerOutput)
2835

2836 2837
    layer_type = (LayerType.CONCAT_LAYER
                  if is_concat_layer else LayerType.CONCAT_PROJ_LAYER)
2838

2839 2840
    if layer_type == LayerType.CONCAT_LAYER:
        assert not bias_attr
2841

2842
    layer = Layer(
2843 2844
        name=name,
        type=layer_type,
2845 2846
        inputs=[x.name for x in input] if is_concat_layer else input,
        active_type=act.name,
2847
        bias=ParamAttr.to_bias(bias_attr),
2848
        **ExtraLayerAttribute.to_kwargs(layer_attr))
2849

2850
    sz = layer.config.size
2851

2852 2853 2854 2855 2856 2857 2858 2859
    return LayerOutput(
        name,
        layer_type=layer_type,
        parents=input if is_concat_layer else [x.origin for x in input],
        activation=act,
        size=sz)


2860 2861
@wrap_name_default("seqconcat")
@wrap_act_default(act=IdentityActivation())
2862
@wrap_bias_attr_default(has_bias=False)
2863 2864 2865 2866 2867
@layer_support()
def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
                     bias_attr=None):
    """
    Concat sequence a with sequence b.
2868

2869
    Inputs:
2870
      - a = [a1, a2, ..., am]
2871
      - b = [b1, b2, ..., bn]
2872

2873 2874 2875 2876
    Output: [a1, ..., am, b1, ..., bn]

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
2877 2878 2879 2880 2881

    The example usage is:

    ..  code-block:: python

2882
        concat = seq_concat_layer(a=layer1, b=layer2)
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893

    :param name: Layer name.
    :type name: basestring
    :param a: input sequence layer
    :type a: LayerOutput
    :param b: input sequence layer
    :type b: LayerOutput
    :param act: Activation type.
    :type act: BaseActivation
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
2894 2895 2896 2897
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute or None or bool
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert a.size == b.size
    Layer(
        name=name,
        type=LayerType.SEQUENCE_CONCAT_LAYER,
        inputs=[a.name, b.name],
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name,
        layer_type=LayerType.SEQUENCE_CONCAT_LAYER,
        parents=[a, b],
        activation=act,
        size=a.size)


2919
@wrap_name_default("memory", "memory_name")
2920 2921
def memory(name,
           size,
2922
           memory_name=None,
2923 2924 2925 2926
           is_seq=False,
           boot_layer=None,
           boot_bias=None,
           boot_bias_active_type=None,
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
           boot_with_const_id=None):
    """
    The memory layers is a layer cross each time step. Reference this output
    as previous time step layer :code:`name` 's output.

    The default memory is zero in first time step, previous time step's
    output in the rest time steps.

    If boot_bias, the first time step value is this bias and
    with activation.

    If boot_with_const_id, then the first time stop is a IndexSlot, the
    Arguments.ids()[0] is this :code:`cost_id`.

    If boot_layer is not null, the memory is just the boot_layer's output.
    Set :code:`is_seq` is true boot layer is sequence.

    The same name layer in recurrent group will set memory on each time
    step.

2947 2948 2949 2950 2951 2952 2953 2954 2955
    .. code-block:: python

       mem = memory(size=256, name='state')
       state = fc_layer(input=mem, size=256, name='state')

    If you do not want to specify the name, you can equivalently use set_input()
    to specify the layer needs to be remembered as the following:

    .. code-block:: python
L
Liu Yiqun 已提交
2956

2957 2958 2959 2960 2961 2962 2963
       mem = memory(size=256)
       state = fc_layer(input=mem, size=256)
       mem.set_input(mem)

    :param name: the name of the layer which this memory remembers.
                 If name is None, user should call set_input() to specify the
                 name of the layer which this memory remembers.
2964 2965 2966
    :type name: basestring
    :param size: size of memory.
    :type size: int
2967 2968 2969
    :param memory_name: the name of the memory.
                        It is ignored when name is provided.
    :type memory_name: basestring
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
    :param is_seq: is sequence for boot_layer
    :type is_seq: bool
    :param boot_layer: boot layer of memory.
    :type boot_layer: LayerOutput|None
    :param boot_bias: boot layer's bias
    :type boot_bias: ParameterAttribute|None
    :param boot_bias_active_type: boot layer's active type.
    :type boot_bias_active_type: BaseActivation
    :param boot_with_const_id: boot layer's id.
    :type boot_with_const_id: int
D
dangqingqing 已提交
2980
    :return: LayerOutput object which is a memory.
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
    :rtype: LayerOutput
    """
    if boot_bias_active_type is None:
        boot_bias_active_type = LinearActivation()

    assert boot_bias is None or isinstance(boot_bias, ParameterAttribute)
    if isinstance(boot_bias, ParameterAttribute):
        boot_bias = ParamAttr.to_bias(boot_bias)

    assert boot_layer is None or isinstance(boot_layer, LayerOutput)
2991 2992
    if name is not None:
        memory_name = None
2993

2994 2995 2996 2997 2998 2999 3000 3001 3002
    memory_name = Memory(
        name,
        size,
        is_sequence=is_seq,
        boot_layer=boot_layer.name if boot_layer is not None else None,
        boot_bias=boot_bias,
        boot_bias_active_type=boot_bias_active_type.name,
        boot_with_const_id=boot_with_const_id,
        memory_name=memory_name)
3003 3004

    lout = LayerOutput(
3005
        name=memory_name,
3006 3007 3008
        size=size,
        layer_type=LayerType.MEMORY,
        parents=[boot_layer] if boot_layer is not None else None)
3009 3010 3011 3012
    return lout


@wrap_bias_attr_default()
3013 3014
@wrap_act_default(
    param_names=['gate_act', 'state_act'], act=SigmoidActivation())
3015 3016 3017
@wrap_act_default(act=TanhActivation())
@wrap_name_default('lstm_step')
@layer_support()
3018 3019
def lstm_step_layer(input,
                    state,
3020
                    size=None,
3021 3022 3023 3024 3025 3026
                    act=None,
                    name=None,
                    gate_act=None,
                    state_act=None,
                    bias_attr=None,
                    layer_attr=None):
3027 3028 3029 3030 3031 3032
    """
    LSTM Step Layer. It used in recurrent_group. The lstm equations are shown
    as follow.

    ..  math::

3033
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
3034

3035
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
3036

3037
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
3038

3039
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
3040

3041
        h_t & = o_t tanh(c_t)
3042 3043


3044
    The input of lstm step is :math:`Wx_t + Wh_{t-1}`, and user should use
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
    :code:`mixed_layer` and :code:`full_matrix_projection` to calculate these
    input vector.

    The state of lstm step is :math:`c_{t-1}`. And lstm step layer will do

    ..  math::

        i_t = \\sigma(input + W_{ci}c_{t-1} + b_i)

        ...


    This layer contains two outputs. Default output is :math:`h_t`. The other
    output is :math:`o_t`, which name is 'state' and can use
    :code:`get_output_layer` to extract this output.

    :param name: Layer's name.
    :type name: basestring
    :param size: Layer's size. NOTE: lstm layer's size, should be equal as
                 :code:`input.size/4`, and should be equal as
                 :code:`state.size`.
    :type size: int
    :param input: input layer. :math:`Wx_t + Wh_{t-1}`
    :type input: LayerOutput
    :param state: State Layer. :math:`c_{t-1}`
    :type state: LayerOutput
    :param act: Activation type. Default is tanh
    :type act: BaseActivation
    :param gate_act: Gate Activation Type. Default is sigmoid, and should
                          be sigmoid only.
    :type gate_act: BaseActivation
    :param state_act: State Activation Type. Default is sigmoid, and should
                           be sigmoid only.
    :type state_act: BaseActivation
    :param bias_attr: Bias Attribute.
    :type bias_attr: ParameterAttribute
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3083
    :return: LayerOutput object.
3084 3085
    :rtype: LayerOutput
    """
3086 3087 3088

    assert size is None or state.size == size
    size = state.size
3089 3090 3091 3092 3093 3094 3095
    Layer(
        name=name,
        type=LayerType.LSTM_STEP_LAYER,
        active_type=act.name,
        active_gate_type=gate_act.name,
        active_state_type=state_act.name,
        bias=ParamAttr.to_bias(bias_attr),
3096
        size=state.size,
3097 3098
        inputs=[input.name, state.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3099

3100 3101 3102 3103 3104 3105 3106
    return LayerOutput(
        name=name,
        layer_type=LayerType.LSTM_STEP_LAYER,
        parents=[input, state],
        activation=act,
        size=size,
        outputs=['default', 'state'])
3107 3108 3109


@wrap_bias_attr_default()
3110
@wrap_param_attr_default()
3111
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
3112 3113 3114
@wrap_act_default(act=TanhActivation())
@wrap_name_default('gru_step')
@layer_support()
3115 3116 3117 3118 3119 3120 3121
def gru_step_layer(input,
                   output_mem,
                   size=None,
                   act=None,
                   name=None,
                   gate_act=None,
                   bias_attr=None,
3122
                   param_attr=None,
3123
                   layer_attr=None):
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133
    """

    :param input:
    :type input: LayerOutput
    :param output_mem:
    :param size:
    :param act:
    :param name:
    :param gate_act:
    :param bias_attr:
3134 3135
    :param param_attr: the parameter_attribute for transforming the output_mem
                       from previous step.
3136
    :param layer_attr:
D
dangqingqing 已提交
3137
    :return: LayerOutput object.
3138 3139 3140 3141 3142 3143 3144 3145
    :rtype: LayerOutput
    """
    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3
    Layer(
        name=name,
        type=LayerType.GRU_STEP_LAYER,
3146 3147 3148 3149
        # The parameter here is for transforming the output_mem. The input has
        # already been transformed outside this module so it does not need
        # parameter associated with it.
        # The parameter here is instead grouped with input is due to
3150
        # backward model compatibility.
3151
        inputs=[Input(input.name, **param_attr.attr), output_mem.name],
3152 3153 3154 3155
        bias=ParamAttr.to_bias(bias_attr),
        size=size,
        active_type=act.name,
        active_gate_type=gate_act.name,
3156
        **ExtraAttr.to_kwargs(layer_attr))
3157
    return LayerOutput(
3158 3159
        name=name,
        layer_type=LayerType.GRU_STEP_LAYER,
3160
        parents=[input, output_mem],
3161 3162
        size=size,
        activation=act)
3163 3164


3165 3166 3167 3168
@wrap_bias_attr_default()
@wrap_param_attr_default()
@wrap_act_default(param_names=['gate_act'], act=SigmoidActivation())
@wrap_act_default(act=TanhActivation())
Q
qijun 已提交
3169
@wrap_name_default('gru_step_naive')
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
@layer_support(ERROR_CLIPPING, DROPOUT)
def gru_step_naive_layer(input,
                         output_mem,
                         size=None,
                         name=None,
                         act=None,
                         gate_act=None,
                         bias_attr=None,
                         param_attr=None,
                         layer_attr=None):
    """
    GRU Step Layer, but using MixedLayer to generate. It support ERROR_CLIPPING
    and DROPOUT.

    :param input:
    :param output_mem:
    :param size:
    :param name:
    :param act:
    :param gate_act:
    :param bias_attr:
    :param param_attr:
    :param layer_attr:
    :return:
    """
    if input.size % 3 != 0:
        raise ValueError("GruStep input size must be divided by 3")
    if size is None:
        size = input.size / 3

    def __gate__(gate_name, offset):
        with mixed_layer(
                name=name + "_" + gate_name,
                size=size,
                layer_attr=layer_attr,
                bias_attr=bias_attr,
                act=gate_act) as gate:
            gate += identity_projection(input=input, offset=offset)
            gate += full_matrix_projection(
                input=output_mem, param_attr=param_attr)
        return gate

    update_gate = __gate__("update", 0)
    reset_gate = __gate__("reset", size)

    with mixed_layer(
            name=name + "_reset_output", bias_attr=False) as reset_output:
        reset_output += dotmul_operator(a=output_mem, b=reset_gate)

    with mixed_layer(
            name=name + "_output_candidate",
            size=size,
            layer_attr=layer_attr,
            bias_attr=bias_attr,
            act=act) as output_candidate:
        output_candidate += identity_projection(input=input, offset=2 * size)
        output_candidate += full_matrix_projection(
            input=reset_output, param_attr=param_attr)

    with mixed_layer(name=name) as output:
        output += identity_projection(output_mem)
        output += dotmul_operator(a=output_mem, b=update_gate, scale=-1.0)
        output += dotmul_operator(a=output_candidate, b=update_gate)

    return output


3237 3238 3239 3240
@wrap_name_default()
@layer_support()
def get_output_layer(input, arg_name, name=None, layer_attr=None):
    """
3241 3242 3243 3244
    Get layer's output by name. In PaddlePaddle, a layer might return multiple
    values, but returns one layer's output. If the user wants to use another
    output besides the default one, please use get_output_layer first to get
    the output from input.
3245 3246 3247 3248 3249 3250 3251 3252 3253

    :param name: Layer's name.
    :type name: basestring
    :param input: get output layer's input. And this layer should contains
                   multiple outputs.
    :type input: LayerOutput
    :param arg_name: Output name from input.
    :type arg_name: basestring
    :param layer_attr: Layer's extra attribute.
D
dangqingqing 已提交
3254
    :return: LayerOutput object.
3255 3256 3257 3258 3259 3260 3261
    :rtype: LayerOutput
    """
    # GetOutputLayer
    assert arg_name in input.outputs, 'Get Output From an not existed input.' \
                                      ' The get output name is %s, which not' \
                                      ' in %s' % (
                                          arg_name, ",".join(input.outputs))
3262 3263 3264 3265 3266 3267 3268
    Layer(
        name=name,
        type=LayerType.GET_OUTPUT_LAYER,
        inputs=[Input(
            input.name, input_layer_argument=arg_name)],
        size=input.size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3269

3270 3271 3272 3273 3274
    return LayerOutput(
        name=name,
        layer_type=LayerType.GET_OUTPUT_LAYER,
        parents=[input],
        size=input.size)
3275 3276 3277 3278 3279 3280 3281


@wrap_name_default()
@wrap_act_default()
@wrap_bias_attr_default()
@wrap_param_attr_default()
@layer_support()
3282 3283 3284 3285 3286 3287 3288
def recurrent_layer(input,
                    act=None,
                    bias_attr=None,
                    param_attr=None,
                    name=None,
                    reverse=False,
                    layer_attr=None):
3289
    """
3290 3291
    Simple recurrent unit layer. It is just a fully connect layer through both
    time and neural network.
3292

3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
    For each sequence [start, end] it performs the following computation\:

    ..  math::

        out_{i} = act(in_{i})     \\      \\      \\text{for} \\ i = start \\\\
        out_{i} = act(in_{i} + out_{i-1} * W) \\ \\ \\text{for} \\ start < i <= end

    If reversed is true, the order is reversed\:

    ..  math::

        out_{i} = act(in_{i})           \\    \\   \\text{for} \\ i = end  \\\\
        out_{i} = act(in_{i} + out_{i+1} * W) \\ \\ \\text{for} \\ start <= i < end


    :param input: Input Layer
    :type input: LayerOutput
    :param act: activation.
    :type act: BaseActivation
    :param bias_attr: bias attribute.
    :type bias_attr: ParameterAttribute
    :param param_attr: parameter attribute.
    :type param_attr: ParameterAttribute
    :param name: name of the layer
    :type name: basestring
    :param layer_attr: Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3320
    :return: LayerOutput object.
3321
    :rtype: LayerOutput
3322
    """
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
    Layer(
        name=name,
        type=LayerType.RECURRENT_LAYER,
        inputs=Input(input.name, **param_attr.attr),
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
        reversed=reverse,
        **ExtraAttr.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.RECURRENT_LAYER,
        parents=[input],
        size=input.size,
        activation=act,
        reverse=reverse)
3338 3339 3340 3341 3342 3343 3344


class StaticInput(object):
    """
    StaticInput is only used in recurrent_group which defines a read-only memory
    that can be a sequence or non-sequence.
    """
3345

3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
    def __init__(self, input, is_seq=False, size=None):
        assert isinstance(input, LayerOutput)
        self.input = input
        self.is_seq = is_seq
        assert input.size is not None or size is not None
        if size is not None:
            input.size = size


class SubsequenceInput(object):
    """
    Input sequence has sub-sequence, used in recurrent_group.

    The example usage is:

    .. code-block:: python

       input = SubsequenceInput(layer)
    """
3365

3366 3367 3368 3369 3370 3371 3372
    def __init__(self, input):
        assert isinstance(input, LayerOutput)
        assert input.size is not None
        self.input = input


@wrap_name_default("recurrent_group")
3373 3374 3375 3376 3377
def recurrent_group(step,
                    input,
                    reverse=False,
                    name=None,
                    targetInlink=None,
3378
                    is_generating=False):
3379
    """
3380 3381 3382 3383 3384
    Recurrent layer group is an extremely flexible recurrent unit in
    PaddlePaddle. As long as the user defines the calculation done within a
    time step, PaddlePaddle will iterate such a recurrent calculation over
    sequence input. This is extremely usefull for attention based model, or
    Neural Turning Machine like models.
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428

    The basic usage (time steps) is:

    .. code-block:: python

       def step(input):
           output = fc_layer(input=layer,
                             size=1024,
                             act=LinearActivation(),
                             bias_attr=False)
           return output

       group = recurrent_group(input=layer,
                               step=step)

    You can see following configs for further usages:

    - time steps: lstmemory_group, paddle/gserver/tests/sequence_layer_group.conf, \
                  demo/seqToseq/seqToseq_net.py
    - sequence steps: paddle/gserver/tests/sequence_nest_layer_group.conf

    :param step: recurrent one time step function.The input of this function is
                 input of the group. The return of this function will be
                 recurrent group's return value.

                 The recurrent group scatter a sequence into time steps. And
                 for each time step, will invoke step function, and return
                 a time step result. Then gather each time step of output into
                 layer group's output.

    :type step: callable

    :param name: recurrent_group's name.
    :type name: basestring

    :param input: Input links array.

                  LayerOutput will be scattered into time steps.
                  SubsequenceInput will be scattered into sequence steps.
                  StaticInput will be imported to each time step, and doesn't change
                  through time. It's a mechanism to access layer outside step function.

    :type input: LayerOutput|StaticInput|SubsequenceInput|list|tuple

3429 3430
    :param reverse: If reverse is set true, the recurrent unit will process the
                    input sequence in a reverse order.
3431
    :type reverse: bool
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442

    :param targetInlink: the input layer which share info with layer group's output

                         Param input specifies multiple input layers. For
                         SubsequenceInput inputs, config should assign one input
                         layer that share info(the number of sentences and the number
                         of words in each sentence) with all layer group's outputs.
                         targetInlink should be one of the layer group's input.

    :type targetInlink: LayerOutput|SubsequenceInput

3443
    :param is_generating: If is generating, none of input type should be LayerOutput;
3444
                          else, for training or testing, one of the input type must
3445
                          be LayerOutput.
3446

L
Liu Yiqun 已提交
3447
    :type is_generating: bool
3448

D
dangqingqing 已提交
3449
    :return: LayerOutput object.
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
    :rtype: LayerOutput
    """
    model_type('recurrent_nn')

    def is_single_input(x):
        return isinstance(x, LayerOutput) or isinstance(x, StaticInput) \
               or isinstance(x, SubsequenceInput)

    if is_single_input(input):
        input = [input]
3460
    assert isinstance(input, collections.Sequence)
3461 3462 3463 3464 3465 3466

    def is_in_links(x):
        return isinstance(x, LayerOutput) or isinstance(x, SubsequenceInput)

    in_links = filter(is_in_links, input)

3467 3468 3469 3470 3471 3472 3473 3474 3475
    def targetInlink_in_inlinks():
        for inlink in in_links:
            if isinstance(inlink, SubsequenceInput):
                if targetInlink == inlink.input:
                    return True
            elif targetInlink == inlink:
                return True
        return False

3476
    assert (targetInlink == None or targetInlink_in_inlinks())
3477
    targetInlinkName = None if targetInlink == None \
Y
Yu Yang 已提交
3478 3479
        else targetInlink.name if isinstance(targetInlink, LayerOutput) \
        else targetInlink.input.name
3480

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
    contains_sub_seq = [False]

    def map_in_links(x):
        if isinstance(x, SubsequenceInput):
            contains_sub_seq[0] = True
            return Link(name=x.input.name, has_subseq=True)
        else:
            return x.name

    RecurrentLayerGroupWithoutOutLinksBegin(
3491 3492
        name=name,
        in_links=map(map_in_links, in_links),
3493 3494
        seq_reversed=reverse,
        target_inlinkname=targetInlinkName)
3495
    in_args = []
3496
    has_LayerOutput = False
3497 3498 3499 3500
    for each_input in input:
        assert is_single_input(each_input)
        if isinstance(each_input, LayerOutput):
            in_args.append(each_input)
3501
            has_LayerOutput = True
3502 3503
        elif isinstance(each_input, SubsequenceInput):
            in_args.append(each_input.input)
3504
            has_LayerOutput = True
3505 3506
        else:
            mem_name = "__%s_memory__" % each_input.input.name
3507 3508 3509 3510 3511 3512 3513 3514 3515
            mem = memory(
                name=mem_name,
                is_seq=each_input.is_seq,
                size=each_input.input.size,
                boot_layer=each_input.input)
            with mixed_layer(
                    name=mem_name,
                    size=each_input.input.size,
                    act=IdentityActivation()) as mix:
3516 3517 3518
                mix += identity_projection(mem)
            in_args.append(mem)

3519
    assert (is_generating != has_LayerOutput)
3520

3521 3522 3523 3524 3525 3526 3527
    layer_outs = step(*in_args)

    if isinstance(layer_outs, LayerOutput):
        layer_outs = [layer_outs]

    for ot in layer_outs:
        assert isinstance(ot, LayerOutput)
3528
        ot.reverse = reverse
3529 3530 3531 3532 3533 3534 3535
        if contains_sub_seq[0]:
            RecurrentLayerGroupSetOutLink(Link(ot.name, has_subseq=True))
        else:
            RecurrentLayerGroupSetOutLink(ot.name)

    RecurrentLayerGroupEnd(name=name)

X
xuwei06 已提交
3536 3537 3538 3539 3540
    for layer_out in layer_outs:
        # Thee previous full_name is the name is the rnn group
        # We need a full_name outside the rnn group
        layer_out.full_name = MakeLayerNameInSubmodel(layer_out.name)

3541 3542 3543 3544 3545
    if len(layer_outs) == 1:
        return layer_outs[0]
    else:
        return layer_outs

3546

3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
class BaseGeneratedInput(object):
    def __init__(self):
        self.bos_id = None
        self.eos_id = None

    def before_real_step(self):
        raise NotImplementedError()

    def after_real_step(self, *args):
        raise NotImplementedError()


class GeneratedInput(BaseGeneratedInput):
    def after_real_step(self, input):
        return maxid_layer(input=input, name='__beam_search_predict__')

    def before_real_step(self):
3564 3565 3566 3567 3568 3569 3570 3571 3572
        predict_id = memory(
            name='__beam_search_predict__',
            size=self.size,
            boot_with_const_id=self.bos_id)

        trg_emb = embedding_layer(
            input=predict_id,
            size=self.embedding_size,
            param_attr=ParamAttr(name=self.embedding_name))
3573 3574 3575
        return trg_emb

    def __init__(self, size, embedding_name, embedding_size):
3576
        super(GeneratedInput, self).__init__()
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
        self.size = size
        self.embedding_name = embedding_name
        self.embedding_size = embedding_size


@wrap_name_default()
def maxid_layer(input, name=None, layer_attr=None):
    """
    A layer for finding the id which has the maximal value for each sample.
    The result is stored in output.ids.

    The example usage is:

    .. code-block:: python

       maxid = maxid_layer(input=layer)

    :param input: Input layer name.
    :type input: LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3600
    :return: LayerOutput object.
3601 3602 3603 3604
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
    l = Layer(
        name=name,
        type='maxid',
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MAXID_LAYER,
        parents=[input],
        size=l.config.size)
3615

3616

3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642
@wrap_name_default()
def out_prod_layer(input1, input2, name=None, layer_attr=None):
    """
    A layer for computing the outer product of two vectors
    The result is a matrix of size(input1) x size(input2)

    The example usage is:

    .. code-block:: python

       out_prod = out_prod_layer(input1=vec1, input2=vec2)

    :param name: Layer name.
    :type name: basestring
    :param input1: The first input layer name.
    :type input: LayerOutput
    :param input2: The second input layer name.
    :type input2: LayerOutput
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input1, LayerOutput)
    assert isinstance(input2, LayerOutput)
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
    l = Layer(
        name=name,
        type=LayerType.OUT_PROD_LAYER,
        inputs=[input1.name, input2.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.OUT_PROD_LAYER,
        parents=[input1, input2],
        size=l.config.size)
3653

3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669

@wrap_name_default()
def eos_layer(input, eos_id, name=None, layer_attr=None):
    """
    A layer for checking EOS for each sample:
    - output_id = (input_id == conf.eos_id)

    The result is stored in output\_.ids.
    It is used by recurrent layer group.

    The example usage is:

    .. code-block:: python

       eos = eos_layer(input=layer, eos_id=id)

3670 3671
    :param name: Layer name.
    :type name: basestring
3672 3673 3674 3675 3676 3677
    :param input: Input layer name.
    :type input: LayerOutput
    :param eos_id: end id of sequence
    :type eos_id: int
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
D
dangqingqing 已提交
3678
    :return: LayerOutput object.
3679 3680
    :rtype: LayerOutput
    """
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
    l = Layer(
        name=name,
        type=LayerType.EOSID_LAYER,
        eos_id=eos_id,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.EOSID_LAYER,
        parents=[input],
        size=l.config.size)
3692 3693 3694


@wrap_name_default()
3695 3696 3697 3698 3699 3700 3701
def beam_search(step,
                input,
                bos_id,
                eos_id,
                beam_size,
                max_length=500,
                name=None,
3702
                num_results_per_sample=None):
3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
    """
    Beam search is a heuristic search algorithm used in sequence generation.
    It explores a graph by expanding the most promising nodes in a limited set
    to maintain tractability.

    The example usage is:

    .. code-block:: python

        def rnn_step(input):
            last_time_step_output = memory(name='rnn', size=512)
3714
            with mixed_layer(size=512, name='rnn') as simple_rnn:
3715 3716 3717 3718
                simple_rnn += full_matrix_projection(input)
                simple_rnn += last_time_step_output
            return simple_rnn

3719 3720 3721 3722 3723
        generated_word_embedding = GeneratedInput(
                               size=target_dictionary_dim,
                               embedding_name="target_language_embedding",
                               embedding_size=word_vector_dim)

3724 3725
        beam_gen = beam_search(name="decoder",
                               step=rnn_step,
3726 3727
                               input=[StaticInput(encoder_last),
                                      generated_word_embedding],
3728 3729
                               bos_id=0,
                               eos_id=1,
3730
                               beam_size=5)
3731 3732 3733 3734 3735 3736 3737 3738 3739

    Please see the following demo for more details:

    - machine translation : demo/seqToseq/translation/gen.conf \
                            demo/seqToseq/seqToseq_net.py

    :param name: Name of the recurrent unit that generates sequences.
    :type name: base string
    :param step: A callable function that defines the calculation in a time
3740
                 step, and it is applied to sequences with arbitrary length by
3741 3742 3743 3744 3745
                 sharing a same set of weights.

                 You can refer to the first parameter of recurrent_group, or
                 demo/seqToseq/seqToseq_net.py for more details.
    :type step: callable
3746 3747
    :param input: Input data for the recurrent unit, which should include the
                  previously generated words as a GeneratedInput object.
3748
    :type input: list
3749 3750 3751
    :param bos_id: Index of the start symbol in the dictionary. The start symbol
                   is a special token for NLP task, which indicates the
                   beginning of a sequence. In the generation task, the start
3752
                   symbol is essential, since it is used to initialize the RNN
3753 3754 3755 3756 3757 3758 3759 3760
                   internal state.
    :type bos_id: int
    :param eos_id: Index of the end symbol in the dictionary. The end symbol is
                   a special token for NLP task, which indicates the end of a
                   sequence. The generation process will stop once the end
                   symbol is generated, or a pre-defined max iteration number
                   is exceeded.
    :type eos_id: int
3761 3762
    :param max_length: Max generated sequence length.
    :type max_length: int
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
    :param beam_size: Beam search for sequence generation is an iterative search
                      algorithm. To maintain tractability, every iteration only
                      only stores a predetermined number, called the beam_size,
                      of the most promising next words. The greater the beam
                      size, the fewer candidate words are pruned.
    :type beam_size: int
    :param num_results_per_sample: Number of the generated results per input
                                  sequence. This number must always be less than
                                  beam size.
    :type num_results_per_sample: int
3773 3774
    :return: The generated word index.
    :rtype: LayerOutput
3775 3776
    """

3777 3778 3779 3780 3781
    if num_results_per_sample is None:
        num_results_per_sample = beam_size
    if num_results_per_sample > beam_size:
        logger.warning("num_results_per_sample should be less than beam_size")

3782
    if isinstance(input, StaticInput) or isinstance(input, BaseGeneratedInput):
3783 3784 3785 3786 3787 3788
        input = [input]

    generated_input_index = -1

    real_input = []
    for i, each_input in enumerate(input):
3789 3790
        assert isinstance(each_input, StaticInput) or isinstance(
            each_input, BaseGeneratedInput)
3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
        if isinstance(each_input, BaseGeneratedInput):
            assert generated_input_index == -1
            generated_input_index = i
        else:
            real_input.append(each_input)

    assert generated_input_index != -1

    gipt = input[generated_input_index]

    gipt.bos_id = bos_id
    gipt.eos_id = eos_id

    def __real_step__(*args):
        eos_name = "__%s_eos_layer__" % name
3806 3807 3808 3809 3810 3811
        RecurrentLayerGroupSetGenerator(
            Generator(
                eos_layer_name=eos_name,
                max_num_frames=max_length,
                beam_size=beam_size,
                num_results_per_sample=num_results_per_sample))
3812 3813 3814 3815 3816 3817 3818 3819 3820

        args = list(args)
        args.insert(generated_input_index, gipt.before_real_step())

        predict = gipt.after_real_step(step(*args))

        eos_layer(input=predict, eos_id=eos_id, name=eos_name)
        return predict

3821
    tmp = recurrent_group(
3822 3823 3824 3825
        step=__real_step__,
        input=real_input,
        reverse=False,
        name=name,
3826
        is_generating=True)
3827

3828 3829
    return tmp

3830

3831 3832
def __cost_input__(input, label, weight=None):
    """
3833
    inputs and parents for cost layers.
3834 3835 3836 3837
    """
    ipts = [Input(input.name), Input(label.name)]
    parents = [input, label]
    if weight is not None:
3838
        assert weight.size == 1
3839 3840 3841
        ipts.append(Input(weight.name))
        parents.append(weight)
    return ipts, parents
3842

3843 3844

@wrap_name_default()
L
luotao1 已提交
3845
@layer_support()
3846
def mse_cost(input, label, weight=None, name=None, coeff=1.0, layer_attr=None):
3847
    """
3848 3849 3850 3851
    mean squared error cost:

    ..  math::

L
Liu Yiqun 已提交
3852
        \\frac{1}{N}\sum_{i=1}^N(t_i-y_i)^2
3853 3854

    :param name: layer name.
3855
    :type name: basestring
3856
    :param input: Network prediction.
3857
    :type input: LayerOutput
3858
    :param label: Data label.
3859 3860 3861 3862
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
3863 3864
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
3865 3866
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3867
    :return: LayerOutput object.
3868
    :rtype: LayerOutput
3869
    """
3870 3871
    ipts, parents = __cost_input__(input, label, weight)

3872 3873 3874 3875
    Layer(
        inputs=ipts,
        type="square_error",
        name=name,
3876
        coeff=coeff,
3877
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3878
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
3879 3880


L
Luo Tao 已提交
3881 3882 3883
regression_cost = mse_cost


3884
@wrap_name_default("cost")
3885
@layer_support()
3886 3887 3888 3889
def classification_cost(input,
                        label,
                        weight=None,
                        name=None,
3890 3891
                        evaluator=classification_error_evaluator,
                        layer_attr=None):
3892 3893 3894 3895 3896 3897 3898 3899 3900
    """
    classification cost Layer.

    :param name: layer name.
    :type name: basestring
    :param input: input layer name. network output.
    :type input: LayerOutput
    :param label: label layer name. data_layer often.
    :type label: LayerOutput
3901 3902 3903
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
3904
    :param evaluator: Evaluator method.
3905 3906
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
3907
    :return: LayerOutput object.
3908 3909 3910 3911 3912
    :rtype: LayerOutput
    """
    assert input.layer_type != LayerType.DATA
    assert isinstance(input.activation, SoftmaxActivation)
    assert label.layer_type == LayerType.DATA
3913 3914 3915

    ipts, parents = __cost_input__(input, label, weight)

3916 3917 3918 3919 3920
    Layer(
        name=name,
        type="multi-class-cross-entropy",
        inputs=ipts,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
3921 3922 3923 3924 3925 3926 3927 3928 3929 3930

    def __add_evaluator__(e):
        assert callable(e)
        assert hasattr(e, 'is_evaluator')
        assert isinstance(e.is_evaluator, bool)
        assert e.is_evaluator
        assert hasattr(e, "for_classification")
        assert isinstance(e.for_classification, bool)
        assert e.for_classification

3931
        e(name=e.__name__, input=input, label=label, weight=weight)
3932

3933
    if not isinstance(evaluator, collections.Sequence):
3934 3935 3936 3937 3938
        evaluator = [evaluator]

    for each_evaluator in evaluator:
        __add_evaluator__(each_evaluator)

3939
    return LayerOutput(name, LayerType.COST, parents=parents, size=1)
3940

3941

3942 3943 3944 3945 3946 3947 3948 3949 3950
def conv_operator(img,
                  filter,
                  filter_size,
                  num_filters,
                  num_channels=None,
                  stride=1,
                  padding=0,
                  filter_size_y=None,
                  stride_y=None,
3951 3952
                  padding_y=None,
                  trans=False):
3953 3954 3955 3956 3957 3958 3959 3960 3961 3962
    """
    Different from img_conv_layer, conv_op is an Operator, which can be used
    in mixed_layer. And conv_op takes two inputs to perform convolution.
    The first input is the image and the second is filter kernel. It only
    support GPU mode.

    The example usage is:

    .. code-block:: python

3963 3964
       op = conv_operator(img=input1,
                          filter=input2,
3965
                          filter_size=3,
3966 3967 3968
                          num_filters=64,
                          num_channels=64)

3969 3970 3971 3972
    :param img: input image
    :type img: LayerOutput
    :param filter: input filter
    :type filter: LayerOutput
3973 3974
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
3975 3976 3977
    :param filter_size_y: The y dimension of a filter kernel. Since
                        PaddlePaddle now supports rectangular filters,
                        the filter's shape can be (filter_size, filter_size_y).
3978
    :type filter_size_y: int
3979 3980
    :param num_filters: channel of output data.
    :type num_filters: int
3981 3982
    :param num_channels: channel of input data.
    :type num_channels: int
3983
    :param stride: The x dimension of the stride.
3984
    :type stride: int
3985
    :param stride_y: The y dimension of the stride.
3986
    :type stride_y: int
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :return: A ConvOperator Object.
    :rtype: ConvOperator
    """
    if filter_size_y is None:
        filter_size_y = filter_size
    if stride_y is None:
        stride_y = stride
    if padding_y is None:
        padding_y = padding
4000

4001 4002
    if num_channels is None:
        num_channels = img.num_filters
4003 4004 4005

    assert isinstance(filter, LayerOutput)
    if filter.size is not None:
4006
        filter.size = filter_size * filter_size_y * num_filters * num_channels
4007

4008 4009 4010
    opCls = ConvTransOperator if trans else ConvOperator

    op = opCls(
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
        input_layer_names=[img.name, filter.name],
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=1))
4022

4023
    op.origin = [img, filter]
4024 4025
    return op

4026

4027
@wrap_param_attr_default()
4028 4029 4030 4031 4032 4033 4034 4035 4036 4037
def conv_projection(input,
                    filter_size,
                    num_filters,
                    num_channels=None,
                    stride=1,
                    padding=0,
                    filter_size_y=None,
                    stride_y=None,
                    padding_y=None,
                    groups=1,
4038 4039
                    param_attr=None,
                    trans=False):
4040 4041 4042 4043 4044 4045 4046 4047 4048
    """
    Different from img_conv_layer and conv_op, conv_projection is an Projection,
    which can be used in mixed_layer and conat_layer. It use cudnn to implement
    conv and only support GPU mode.

    The example usage is:

    .. code-block:: python

D
dangqingqing 已提交
4049
       proj = conv_projection(input=input1,
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
                              filter_size=3,
                              num_filters=64,
                              num_channels=64)

    :param input: input layer
    :type input: LayerOutput
    :param filter_size: The x dimension of a filter kernel.
    :type filter_size: int
    :param filter_size_y: The y dimension of a filter kernel. Since
                          PaddlePaddle now supports rectangular filters,
                          the filter's shape can be (filter_size, filter_size_y).
    :type filter_size_y: int
    :param num_filters: channel of output data.
    :type num_filters: int
4064 4065
    :param num_channels: channel of input data.
    :type num_channels: int
4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077
    :param stride: The x dimension of the stride.
    :type stride: int
    :param stride_y: The y dimension of the stride.
    :type stride_y: int
    :param padding: The x dimension of padding.
    :type padding: int
    :param padding_y: The y dimension of padding.
    :type padding_y: int
    :param groups: The group number.
    :type groups: int
    :param param_attr: Convolution param attribute. None means default attribute
    :type param_attr: ParameterAttribute
4078 4079
    :param trans: whether it is convTrans or conv
    :type trans: boolean
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
    :return: A DotMulProjection Object.
    :rtype: DotMulProjection
    """
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters

    if filter_size_y is None:
        if isinstance(filter_size, collections.Sequence):
            assert len(filter_size) == 2
            filter_size, filter_size_y = filter_size
        else:
            filter_size_y = filter_size

    if stride_y is None:
        if isinstance(stride, collections.Sequence):
            assert len(stride) == 2
            stride, stride_y = stride
        else:
            stride_y = stride

    if padding_y is None:
        if isinstance(padding, collections.Sequence):
            assert len(padding) == 2
            padding, padding_y = padding
        else:
            padding_y = padding

    if param_attr.attr.get('initial_smart'):
        # special initial for conv layers.
4110
        init_w = (2.0 / (filter_size**2 * num_channels))**0.5
4111 4112 4113 4114 4115
        param_attr.attr["initial_mean"] = 0.0
        param_attr.attr["initial_std"] = init_w
        param_attr.attr["initial_strategy"] = 0
        param_attr.attr["initial_smart"] = False

4116 4117 4118
    projCls = ConvTransProjection if trans else ConvProjection

    proj = projCls(
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
        input_layer_name=input.name,
        num_filters=num_filters,
        conv_conf=Conv(
            filter_size=filter_size,
            padding=padding,
            stride=stride,
            channels=num_channels,
            filter_size_y=filter_size_y,
            padding_y=padding_y,
            stride_y=stride_y,
            groups=groups),
        **param_attr.attr)
4131 4132 4133 4134

    proj.origin = input
    return proj

4135

D
dangqingqing 已提交
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152
@wrap_name_default("pad")
@layer_support()
def pad_layer(input,
              pad_c=None,
              pad_h=None,
              pad_w=None,
              name=None,
              layer_attr=None):
    """
    This operation pads zeros to the input data according to pad_c,pad_h
    and pad_w. pad_c, pad_h, pad_w specifies the which dimension and size
    of padding. And the input data shape is NCHW.

    For example, pad_c=[2,3] means padding 2 zeros before the
    input data and 3 zeros after the input data in channel dimension.
    pad_h means padding zeros in height dimension. pad_w means padding zeros
    in width dimension.
4153

D
dangqingqing 已提交
4154
    For example,
4155

4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176
    .. code-block:: python

       input(2,2,2,3)  = [
                           [ [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]] ],
                           [ [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]] ]
                         ]

       pad_c=[1,1], pad_h=[0,0], pad_w=[0,0]

       output(2,4,2,3) = [
                           [ [[0,0,0], [0,0,0]],
                             [[1,2,3], [3,4,5]],
                             [[2,3,5], [1,6,7]],
                             [[0,0,0], [0,0,0]] ],
                           [ [[0,0,0], [0,0,0]],
                             [[4,3,1], [1,8,7]],
                             [[3,8,9], [2,3,5]],
                             [[0,0,0], [0,0,0]] ]
                         ]
D
dangqingqing 已提交
4177 4178

    The simply usage is:
D
dangqingqing 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239

    .. code-block:: python

       pad = pad_layer(input=ipt,
                       pad_c=[4,4],
                       pad_h=[0,0],
                       pad_w=[2,2])

    :param input: layer's input.
    :type input: LayerOutput
    :param pad_c: padding size in channel dimension.
    :type pad_c: list|None
    :param pad_h: padding size in height dimension.
    :type pad_h: list|None
    :param pad_w: padding size in width dimension.
    :type pad_w: list|None
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :param name: layer name.
    :type name: basestring
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    if pad_c is not None:
        assert isinstance(pad_c, collections.Sequence) and len(pad_c) == 2
    else:
        pad_c = [0, 0]

    if pad_h is not None:
        assert isinstance(pad_h, collections.Sequence) and len(pad_h) == 2
    else:
        pad_h = [0, 0]

    if pad_w is not None:
        assert isinstance(pad_w, collections.Sequence) and len(pad_w) == 2
    else:
        pad_w = [0, 0]

    assert input.num_filters is not None
    in_ch = input.num_filters
    out_ch = in_ch + pad_c[0] + pad_c[1]

    l = Layer(
        name=name,
        type=LayerType.PAD_LAYER,
        inputs=Input(
            input.name,
            pad=Pad(
                channels=in_ch,
                pad_c=pad_c,
                pad_h=pad_h,
                pad_w=pad_w, )),
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        layer_type=LayerType.PAD_LAYER,
        parents=[input],
        num_filters=out_ch,
        size=l.config.size)


4240
@wrap_name_default()
L
luotao1 已提交
4241 4242
@layer_support()
def conv_shift_layer(a, b, name=None, layer_attr=None):
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
    """
    This layer performs cyclic convolution for two input. For example:
      - a[in]: contains M elements.
      - b[in]: contains N elements (N should be odd).
      - c[out]: contains M elements.

    .. math::

        c[i] = \sum_{j=-(N-1)/2}^{(N-1)/2}a_{i+j} * b_{j}

    In this formular:
4254 4255 4256 4257
     - a's index is computed modulo M. When it is negative, then get item from
       the right side (which is the end of array) to the left.
     - b's index is computed modulo N. When it is negative, then get item from
       the right size (which is the end of array) to the left.
4258 4259 4260 4261 4262

    The example usage is:

    .. code-block:: python

L
Luo Tao 已提交
4263
       conv_shift = conv_shift_layer(a=layer1, b=layer2)
4264 4265 4266

    :param name: layer name
    :type name: basestring
4267 4268
    :param a: Input layer a.
    :type a: LayerOutput
L
Luo Tao 已提交
4269
    :param b: input layer b.
4270
    :type b: LayerOutput
L
luotao1 已提交
4271 4272
    :param layer_attr: layer's extra attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
4273
    :return: LayerOutput object.
4274 4275
    :rtype: LayerOutput
    """
4276 4277
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
    assert b.size is None or b.size % 2 == 1  # size of b must be odd.
4278 4279 4280
    Layer(
        name=name,
        type=LayerType.CONV_SHIFT_LAYER,
4281
        inputs=[a.name, b.name],
4282
        **ExtraLayerAttribute.to_kwargs(layer_attr))
4283

4284 4285
    return LayerOutput(
        name, LayerType.CONV_SHIFT_LAYER, parents=[a, b], size=a.size)
4286 4287 4288 4289 4290


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
4291
@wrap_act_default(act=LinearActivation())
4292
@layer_support(ERROR_CLIPPING, DROPOUT)
4293 4294 4295 4296 4297 4298 4299 4300
def tensor_layer(a,
                 b,
                 size,
                 act=None,
                 name=None,
                 param_attr=None,
                 bias_attr=None,
                 layer_attr=None):
4301 4302 4303 4304 4305
    """
    This layer performs tensor operation for two input.
    For example, each sample:

    .. math::
4306
       y_{i} = a * W_{i} * {b^\mathrm{T}}, i=0,1,...,K-1
4307 4308

    In this formular:
4309 4310
      - :math:`a`: the first input contains M elements.
      - :math:`b`: the second input contains N elements.
4311 4312
      - :math:`y_{i}`: the i-th element of y.
      - :math:`W_{i}`: the i-th learned weight, shape if [M, N]
4313
      - :math:`b^\mathrm{T}`: the transpose of :math:`b_{2}`.
4314 4315 4316 4317 4318

    The simple usage is:

    .. code-block:: python

4319
       tensor = tensor_layer(a=layer1, b=layer2, size=1000)
4320 4321 4322

    :param name: layer name
    :type name: basestring
4323 4324 4325 4326
    :param a: Input layer a.
    :type a: LayerOutput
    :param b: input layer b.
    :type b: LayerOutput
4327
    :param size: the layer dimension.
4328
    :type size: int.
4329 4330 4331
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
4332
    :type param_attr: ParameterAttribute
4333 4334 4335 4336 4337 4338
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4339
    :return: LayerOutput object.
4340 4341
    :rtype: LayerOutput
    """
4342
    assert isinstance(a, LayerOutput) and isinstance(b, LayerOutput)
4343 4344 4345 4346 4347 4348
    Layer(
        name=name,
        size=size,
        type=LayerType.TENSOR_LAYER,
        active_type=act.name,
        bias=ParamAttr.to_bias(bias_attr),
4349 4350 4351 4352
        inputs=[Input(a.name, **param_attr.attr), Input(b.name)],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.TENSOR_LAYER, parents=[a, b], activation=act, size=size)
4353 4354 4355 4356 4357 4358


@wrap_name_default()
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default()
L
luotao1 已提交
4359
@layer_support()
4360 4361
def selective_fc_layer(input,
                       size,
L
Luo Tao 已提交
4362
                       select=None,
4363 4364
                       act=None,
                       name=None,
4365 4366 4367
                       pass_generation=False,
                       has_selected_colums=True,
                       mul_ratio=0.02,
4368 4369 4370
                       param_attr=None,
                       bias_attr=None,
                       layer_attr=None):
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380
    """
    Selectived fully connected layer. Different from fc_layer, the output
    of this layer maybe sparse. It requires an additional input to indicate
    several selected columns for output. If the selected columns is not
    specified, selective_fc_layer acts exactly like fc_layer.

    The simple usage is:

    .. code-block:: python

4381
       sel_fc = selective_fc_layer(input=input, size=128, act=TanhActivation())
4382 4383 4384 4385 4386

    :param name: The Layer Name.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput|list|tuple
4387 4388
    :param select: The select layer. The output of select layer should be a
                   sparse binary matrix, and treat as the mask of selective fc.
L
Luo Tao 已提交
4389
                   If is None, acts exactly like fc_layer.
4390
    :type select: LayerOutput
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402
    :param size: The layer dimension.
    :type size: int
    :param act: Activation Type. Default is tanh.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute.
    :type param_attr: ParameterAttribute
    :param bias_attr: The Bias Attribute. If no bias, then pass False or
                      something not type of ParameterAttribute. None will get a
                      default Bias.
    :type bias_attr: ParameterAttribute|None|Any
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4403
    :return: LayerOutput object.
4404 4405 4406 4407
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
4408
        assert not isinstance(param_attr, collections.Sequence)
4409 4410
        param_attr = [param_attr]
    else:
4411
        if isinstance(param_attr, collections.Sequence):
4412 4413 4414 4415
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

4416 4417 4418 4419
    assert isinstance(input, collections.Sequence)
    assert isinstance(select, LayerOutput)
    if select.size is not None:
        assert select.size == size
4420
    Layer(
4421 4422 4423
        inputs=[
            Input(ipt.name, **attr.attr) for ipt, attr in zip(input, param_attr)
        ] + [select.name],
4424 4425 4426
        name=name,
        type=LayerType.SEL_FC_LAYER,
        size=size,
4427
        bias=ParameterAttribute.to_bias(bias_attr),
4428 4429 4430 4431
        active_type=act.name,
        selective_fc_pass_generation=pass_generation,
        has_selected_colums=has_selected_colums,
        selective_fc_full_mul_ratio=mul_ratio,
4432 4433 4434 4435 4436 4437 4438
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.SEL_FC_LAYER,
        list(input) + [select],
        activation=act,
        size=size)
4439 4440 4441


@wrap_name_default()
L
luotao1 已提交
4442 4443
@layer_support()
def sampling_id_layer(input, name=None, layer_attr=None):
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
    """
    A layer for sampling id from multinomial distribution from the input layer.
    Sampling one id for one sample.

    The simple usage is:

    .. code-block:: python

       samping_id = sampling_id_layer(input=input)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4458 4459
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4460
    :return: LayerOutput object.
4461 4462
    :rtype: LayerOutput
    """
4463
    l = Layer(
4464 4465 4466
        name=name,
        type=LayerType.SAMPLING_ID_LAYER,
        inputs=[Input(input.name)],
4467 4468 4469
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SAMPLING_ID_LAYER, input, size=l.config.size)
4470 4471 4472


@wrap_name_default()
L
luotao1 已提交
4473
@layer_support()
4474 4475 4476 4477
def slope_intercept_layer(input,
                          name=None,
                          slope=1.0,
                          intercept=0.0,
L
luotao1 已提交
4478
                          layer_attr=None):
4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499
    """
    This layer for applying a slope and an intercept to the input
    element-wise. There is no activation and weight.

    ..  math::
        y = slope * x + intercept

    The simple usage is:

    .. code-block:: python

       scale = slope_intercept_layer(input=input, slope=-1.0, intercept=1.0)

    :param input: The input layer.
    :type input: LayerOutput
    :param name: The Layer Name.
    :type name: basestring
    :param slope: the scale factor.
    :type slope: float.
    :param intercept: the offset.
    :type intercept: float.
L
luotao1 已提交
4500 4501
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4502
    :return: LayerOutput object.
4503 4504 4505 4506 4507 4508 4509 4510
    :rtype: LayerOutput
    """
    Layer(
        name=name,
        type=LayerType.SLOPE_INTERCEPT_LAYER,
        slope=slope,
        intercept=intercept,
        inputs=[Input(input.name)],
4511 4512 4513
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SLOPE_INTERCEPT_LAYER, input, size=input.size)
4514 4515 4516


@wrap_name_default()
L
luotao1 已提交
4517
@layer_support()
4518
def linear_comb_layer(weights, vectors, size=None, name=None, layer_attr=None):
4519
    """
4520 4521 4522 4523
    A layer for weighted sum of vectors takes two inputs.
      - Input: size of weights is M
               size of vectors is M*N
      - Output: a vector of size=N
4524 4525 4526

    .. math::

4527
       z(i) = \sum_{j=0}^{M-1} x(j) y(i+Nj)
4528

4529 4530 4531 4532 4533
    where :math:`0 \le i \le N-1`

    Or in the matrix notation:

    .. math::
4534

4535
       z = x^\mathrm{T} Y
4536 4537

    In this formular:
4538 4539 4540 4541 4542 4543
      - :math:`x`: weights
      - :math:`y`: vectors.
      - :math:`z`: the output.

    Note that the above computation is for one sample. Multiple samples are
    processed in one batch.
4544 4545 4546 4547 4548

    The simple usage is:

    .. code-block:: python

4549
       linear_comb = linear_comb_layer(weights=weight, vectors=vectors,
4550 4551
                                       size=elem_dim)

4552 4553 4554 4555
    :param weights: The weight layer.
    :type weights: LayerOutput
    :param vectors: The vector layer.
    :type vectors: LayerOutput
4556 4557 4558 4559
    :param size: the dimension of this layer.
    :type size: int
    :param name: The Layer Name.
    :type name: basestring
L
luotao1 已提交
4560 4561
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4562
    :return: LayerOutput object.
4563 4564
    :rtype: LayerOutput
    """
4565 4566 4567 4568
    assert isinstance(weights, LayerOutput) and isinstance(vectors, LayerOutput)
    if vectors.size is not None and weights.size is not None:
        assert vectors.size % weights.size == 0
        if size is None:
4569
            size = vectors.size / weights.size
4570 4571
        else:
            assert size == vectors.size / weights.size
4572 4573
    Layer(
        name=name,
4574
        type=LayerType.LINEAR_COMBINATION_LAYER,
4575
        size=size,
4576
        inputs=[Input(weights.name), Input(vectors.name)],
4577 4578 4579
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.LINEAR_COMBINATION_LAYER, [weights, vectors], size=size)
4580

4581

4582
convex_comb_layer = linear_comb_layer
4583

4584

4585
@wrap_name_default()
L
luotao1 已提交
4586
@layer_support()
4587 4588 4589 4590 4591 4592 4593
def block_expand_layer(input,
                       block_x=0,
                       block_y=0,
                       stride_x=0,
                       stride_y=0,
                       padding_x=0,
                       padding_y=0,
4594
                       num_channels=None,
L
luotao1 已提交
4595 4596
                       name=None,
                       layer_attr=None):
4597 4598
    """
    Expand feature map to minibatch matrix.
4599
       - matrix width is: block_y * block_x * num_channels
4600
       - matirx height is: outputH * outputW
4601 4602 4603 4604 4605 4606 4607 4608 4609 4610

    .. math::

       outputH = 1 + (2 * padding_y + imgSizeH - block_y + stride_y - 1) / stride_y

       outputW = 1 + (2 * padding_x + imgSizeW - block_x + stride_x - 1) / stride_x

    The expand method is the same with ExpandConvLayer, but saved the transposed
    value. After expanding, output.sequenceStartPositions will store timeline.
    The number of time steps are outputH * outputW and the dimension of each
4611
    time step is block_y * block_x * num_channels. This layer can be used after
4612 4613
    convolution neural network, and before recurrent neural network.

4614 4615 4616 4617
    The simple usage is:

    .. code-block:: python

L
Luo Tao 已提交
4618
       block_expand = block_expand_layer(input=layer,
4619
                                         num_channels=128,
4620 4621 4622 4623 4624
                                         stride_x=1,
                                         stride_y=1,
                                         block_x=1,
                                         block_x=3)

4625 4626
    :param input: The input layer.
    :type input: LayerOutput
4627 4628
    :param num_channels: The channel number of input layer.
    :type num_channels: int|None
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642
    :param block_x: The width of sub block.
    :type block_x: int
    :param block_y: The width of sub block.
    :type block_y: int
    :param stride_x: The stride size in horizontal direction.
    :type stride_x: int
    :param stride_y: The stride size in vertical direction.
    :type stride_y: int
    :param padding_x: The padding size in horizontal direction.
    :type padding_x: int
    :param padding_y: The padding size in vertical direction.
    :type padding_y: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
L
luotao1 已提交
4643 4644
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4645
    :return: LayerOutput object.
4646 4647
    :rtype: LayerOutput
    """
4648 4649 4650
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667
    l = Layer(
        name=name,
        inputs=Input(
            input.name,
            block_expand=BlockExpand(
                channels=num_channels,
                block_x=block_x,
                block_y=block_y,
                stride_x=stride_x,
                stride_y=stride_y,
                padding_x=padding_x,
                padding_y=padding_y)),
        type=LayerType.BLOCK_EXPAND,
        **ExtraLayerAttribute.to_kwargs(layer_attr))

    return LayerOutput(
        name, LayerType.BLOCK_EXPAND, parents=[input], size=l.config.size)
4668 4669


4670 4671
@wrap_name_default()
@layer_support()
4672
def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
4673 4674 4675 4676 4677
    """
    A layer to do max out on conv layer output.
      - Input: output of a conv layer.
      - Output: feature map size same as input. Channel is (input channel) / groups.

4678
    So groups should be larger than 1, and the num of channels should be able
4679 4680
    to devided by groups.

4681
    Please refer to Paper:
4682 4683 4684 4685
      - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf
      - Multi-digit Number Recognition from Street View \
        Imagery using Deep Convolutional Neural Networks: \
        https://arxiv.org/pdf/1312.6082v4.pdf
4686

4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715
    The simple usage is:

    .. code-block:: python

       maxout = maxout_layer(input,
                             num_channels=128,
                             groups=4)

    :param input: The input layer.
    :type input: LayerOutput
    :param num_channels: The channel number of input layer. If None will be set
                     automatically from previous output.
    :type num_channels: int|None
    :param groups: The group number of input layer.
    :type groups: int
    :param name: The name of this layer, which can not specify.
    :type name: None|basestring.
    :param layer_attr: Extra Layer attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert input.layer_type == LayerType.CONV_LAYER
    assert isinstance(input.activation, LinearActivation)
    assert groups > 1
    if num_channels is None:
        assert input.num_filters is not None
        num_channels = input.num_filters
    assert num_channels % groups == 0
4716 4717 4718 4719 4720 4721 4722 4723 4724
    l = Layer(
        name=name,
        inputs=Input(
            input.name, maxout=MaxOut(
                channels=num_channels, groups=groups)),
        type=LayerType.MAXOUT,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.MAXOUT, parents=[input], size=l.config.size)
4725 4726


4727
@wrap_name_default()
L
luotao1 已提交
4728
@layer_support()
4729 4730 4731 4732 4733
def ctc_layer(input,
              label,
              size=None,
              name=None,
              norm_by_times=False,
L
luotao1 已提交
4734
              layer_attr=None):
4735 4736 4737 4738 4739
    """
    Connectionist Temporal Classification (CTC) is designed for temporal
    classication task. That is, for sequence labeling problems where the
    alignment between the inputs and the target labels is unknown.

4740 4741
    More details can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
4742 4743
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
    icml2006_GravesFGS06.pdf>`_
4744 4745 4746 4747 4748 4749 4750 4751

    Note:
        Considering the 'blank' label needed by CTC, you need to use
        (num_classes + 1) as the input size. num_classes is the category number.
        And the 'blank' is the last category index. So the size of 'input' layer, such as
        fc_layer with softmax activation, should be num_classes + 1. The size of ctc_layer
        should also be num_classes + 1.

4752
    The example usage is:
4753 4754 4755 4756 4757 4758 4759 4760

    .. code-block:: python

      ctc = ctc_layer(input=input,
                      label=label,
                      size=9055,
                      norm_by_times=True)

4761
    :param input: The input layer.
4762 4763 4764
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
4765
    :param size: category numbers + 1.
4766
    :type size: int
4767 4768
    :param name: The name of this layer
    :type name: basestring|None
4769 4770
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
L
luotao1 已提交
4771 4772
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4773
    :return: LayerOutput object.
4774 4775 4776 4777
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
4778 4779 4780 4781 4782
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
4783
    Layer(
4784 4785 4786 4787
        name=name,
        type=LayerType.CTC_LAYER,
        size=size,
        norm_by_times=norm_by_times,
L
luotao1 已提交
4788
        inputs=[input.name, label.name],
4789
        **ExtraLayerAttribute.to_kwargs(layer_attr))
4790 4791
    return LayerOutput(name, LayerType.CTC_LAYER, [input, label], size=size)

4792

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803
@wrap_name_default()
@layer_support()
def warp_ctc_layer(input,
                   label,
                   size=None,
                   name=None,
                   blank=0,
                   norm_by_times=False,
                   layer_attr=None):
    """
    A layer intergrating the open-source `warp-ctc
4804
    <https://github.com/baidu-research/warp-ctc>`_ library, which is used in
4805
    `Deep Speech 2: End-toEnd Speech Recognition in English and Mandarin
4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822
    <https://arxiv.org/pdf/1512.02595v1.pdf>`_, to compute Connectionist Temporal
    Classification (CTC) loss. Besides, another `warp-ctc
    <https://github.com/gangliao/warp-ctc>`_ repository, which is forked from
    the official one, is maintained to enable more compiling options. During the
    building process, PaddlePaddle will clone the source codes, build and
    install it to :code:`third_party/install/warpctc` directory.

    To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`,
    using following methods:

    1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api),
    such as :code:`paddle.init(use_gpu=True,
    warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`.

    2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH
    on Mac OS. For instance, :code:`export
    LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`.
4823 4824 4825 4826

    More details of CTC can be found by referring to `Connectionist Temporal
    Classification: Labelling Unsegmented Sequence Data with Recurrent
    Neural Networks <http://machinelearning.wustl.edu/mlpapers/paper_files/
4827
    icml2006_GravesFGS06.pdf>`_.
4828 4829 4830

    Note:
        - Let num_classes represent the category number. Considering the 'blank'
4831 4832 4833
          label needed by CTC, you need to use (num_classes + 1) as the input size.
          Thus, the size of both warp_ctc layer and 'input' layer should be set to
          num_classes + 1.
4834 4835
        - You can set 'blank' to any value ranged in [0, num_classes], which
          should be consistent as that used in your labels.
4836
        - As a native 'softmax' activation is interated to the warp-ctc library,
L
Luo Tao 已提交
4837
          'linear' activation is expected instead in the 'input' layer.
4838

4839
    The example usage is:
4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884

    .. code-block:: python

      ctc = warp_ctc_layer(input=input,
                           label=label,
                           size=1001,
                           blank=1000,
                           norm_by_times=False)

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The data layer of label with variable length.
    :type label: LayerOutput
    :param size: category numbers + 1.
    :type size: int
    :param name: The name of this layer, which can not specify.
    :type name: basestring|None
    :param blank: the 'blank' label used in ctc
    :type blank: int
    :param norm_by_times: Whether to normalization by times. False by default.
    :type norm_by_times: bool
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    if label.size is not None:
        if size is not None:
            assert size == label.size + 1
        else:
            size = label.size + 1
    Layer(
        name=name,
        type=LayerType.WARP_CTC_LAYER,
        size=size,
        blank=blank,
        norm_by_times=norm_by_times,
        inputs=[input.name, label.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.WARP_CTC_LAYER, parents=[input, label], size=size)


4885
@wrap_name_default()
4886
@wrap_param_attr_default()
L
luotao1 已提交
4887
@layer_support()
4888 4889 4890 4891 4892 4893
def crf_layer(input,
              label,
              size=None,
              weight=None,
              param_attr=None,
              name=None,
4894
              coeff=1.0,
L
luotao1 已提交
4895
              layer_attr=None):
4896 4897 4898 4899
    """
    A layer for calculating the cost of sequential conditional random
    field model.

4900
    The example usage is:
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910

    .. code-block:: python

      crf = crf_layer(input=input,
                      label=label,
                      size=label_dim)

    :param input: The first input layer is the feature.
    :type input: LayerOutput
    :param label: The second input layer is label.
4911
    :type label: LayerOutput
4912 4913 4914 4915 4916 4917 4918 4919 4920
    :param size: The category number.
    :type size: int
    :param weight: The third layer is "weight" of each sample, which is an
                  optional argument.
    :type weight: LayerOutput
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
4921 4922
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
4923 4924
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4925
    :return: LayerOutput object.
4926 4927 4928 4929 4930
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert weight is None or isinstance(weight, LayerOutput)
4931 4932 4933 4934 4935 4936
    if input.size is not None and label.size is not None:
        assert input.size == label.size
        if size is None:
            size = input.size
        else:
            assert size == input.size
4937

4938
    ipts = [Input(input.name, **param_attr.attr), Input(label.name)]
4939 4940 4941 4942
    if weight is not None:
        ipts.append(Input(weight.name))

    Layer(
4943 4944 4945 4946
        name=name,
        type=LayerType.CRF_LAYER,
        size=size,
        inputs=ipts,
4947
        coeff=coeff,
4948
        **ExtraLayerAttribute.to_kwargs(layer_attr))
4949 4950 4951
    parents = [input, label]
    if weight is not None:
        parents.append(weight)
4952 4953 4954 4955
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_LAYER, parents, size=1)
4956

4957

4958
@wrap_name_default()
4959
@wrap_param_attr_default()
L
luotao1 已提交
4960
@layer_support()
4961 4962 4963 4964 4965
def crf_decoding_layer(input,
                       size,
                       label=None,
                       param_attr=None,
                       name=None,
L
luotao1 已提交
4966
                       layer_attr=None):
4967 4968 4969 4970 4971 4972 4973
    """
    A layer for calculating the decoding sequence of sequential conditional
    random field model. The decoding sequence is stored in output.ids.
    If a second input is provided, it is treated as the ground-truth label, and
    this layer will also calculate error. output.value[i] is 1 for incorrect
    decoding or 0 for correct decoding.

4974
    The example usage is:
L
Luo Tao 已提交
4975 4976 4977 4978 4979 4980

    .. code-block:: python

      crf_decoding = crf_decoding_layer(input=input,
                                        size=label_dim)

4981 4982 4983 4984 4985 4986 4987 4988 4989 4990
    :param input: The first input layer.
    :type input: LayerOutput
    :param size: size of this layer.
    :type size: int
    :param label: None or ground-truth label.
    :type label: LayerOutput or None
    :param param_attr: Parameter attribute. None means default attribute
    :type param_attr: ParameterAttribute
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
4991 4992
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
D
dangqingqing 已提交
4993
    :return: LayerOutput object.
4994 4995 4996 4997 4998 4999
    :rtype: LayerOutput
    """

    assert isinstance(input, LayerOutput)
    assert label is None or isinstance(label, LayerOutput)

5000
    ipts = [Input(input.name, **param_attr.attr)]
5001 5002 5003 5004
    if label is not None:
        ipts.append(Input(label.name))

    Layer(
5005 5006 5007 5008
        name=name,
        type=LayerType.CRF_DECODING_LAYER,
        size=size,
        inputs=ipts,
5009
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5010 5011 5012
    parents = [input]
    if label is not None:
        parents.append(label)
5013 5014 5015 5016
    # The size for LayerOutput means the dimension of the output.
    # It's different from the meaning of crf layer, which is the number of
    # classes.
    return LayerOutput(name, LayerType.CRF_DECODING_LAYER, parents, size=1)
5017

5018

Y
Yu Yang 已提交
5019
@wrap_act_default(act=SigmoidActivation())
5020
@wrap_bias_attr_default(has_bias=True)
5021
@wrap_param_attr_default()
5022 5023
@wrap_name_default()
@layer_support()
5024 5025
def nce_layer(input,
              label,
C
caoying03 已提交
5026
              num_classes=None,
Y
Yu Yang 已提交
5027
              act=None,
5028
              param_attr=None,
5029 5030 5031 5032 5033 5034
              weight=None,
              num_neg_samples=10,
              neg_distribution=None,
              name=None,
              bias_attr=None,
              layer_attr=None):
5035 5036 5037 5038 5039 5040 5041 5042 5043
    """
    Noise-contrastive estimation.
    Implements the method in the following paper:
    A fast and simple algorithm for training neural probabilistic language models.

    The example usage is:

    .. code-block:: python

C
caoying03 已提交
5044 5045
       cost = nce_layer(input=[layer1, layer2], label=layer2,
                        param_attr=[attr1, attr2], weight=layer3,
5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
                        num_classes=3, neg_distribution=[0.1,0.3,0.6])

    :param name: layer name
    :type name: basestring
    :param input: input layers. It could be a LayerOutput of list/tuple of LayerOutput.
    :type input: LayerOutput|list|tuple|collections.Sequence
    :param label: label layer
    :type label: LayerOutput
    :param weight: weight layer, can be None(default)
    :type weight: LayerOutput
    :param num_classes: number of classes.
5057
    :type num_classes: int
Y
Yu Yang 已提交
5058 5059
    :param act: Activation, default is Sigmoid.
    :type act: BaseActivation
5060 5061
    :param param_attr: The Parameter Attribute|list.
    :type param_attr: ParameterAttribute
5062
    :param num_neg_samples: number of negative samples. Default is 10.
5063
    :type num_neg_samples: int
5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076
    :param neg_distribution: The distribution for generating the random negative labels.
                             A uniform distribution will be used if not provided.
                             If not None, its length must be equal to num_classes.
    :type neg_distribution: list|tuple|collections.Sequence|None
    :param bias_attr: Bias parameter attribute. True if no bias.
    :type bias_attr: ParameterAttribute|None|False
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: layer name.
    :rtype: LayerOutput
    """
    if isinstance(input, LayerOutput):
        input = [input]
5077 5078 5079 5080 5081 5082 5083 5084
        assert not isinstance(param_attr, collections.Sequence)
        param_attr = [param_attr]
    else:
        if isinstance(param_attr, collections.Sequence):
            assert len(input) == len(param_attr)
        else:
            param_attr = [copy.deepcopy(param_attr) for _ in range(len(input))]

5085
    assert isinstance(input, collections.Sequence)
5086

5087 5088
    assert isinstance(label, LayerOutput)
    assert label.layer_type == LayerType.DATA
C
caoying03 已提交
5089 5090
    if num_classes is None:
        num_classes = label.size
5091 5092 5093
    if neg_distribution is not None:
        assert isinstance(neg_distribution, collections.Sequence)
        assert len(neg_distribution) == num_classes
5094
        assert abs(sum(neg_distribution) - 1.0) < 1e-5
Y
Yu Yang 已提交
5095 5096
    if not isinstance(act, BaseActivation):
        raise TypeError()
5097

5098 5099
    ipts_for_layer = []
    parents = []
5100
    for each_input, attr in zip(input, param_attr):
5101
        assert isinstance(each_input, LayerOutput)
5102
        ipts_for_layer.append(Input(each_input.name, **attr.attr))
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
        parents.append(each_input)
    ipts_for_layer.append(label.name)
    parents.append(label)

    if weight is not None:
        assert isinstance(weight, LayerOutput)
        assert weight.layer_type == LayerType.DATA
        ipts_for_layer.append(weight.name)
        parents.append(weight)

5113
    l = Layer(
5114 5115 5116 5117
        name=name,
        type=LayerType.NCE_LAYER,
        num_classes=num_classes,
        neg_sampling_dist=neg_distribution,
Y
Yu Yang 已提交
5118
        active_type=act.name,
5119 5120 5121
        num_neg_samples=num_neg_samples,
        inputs=ipts_for_layer,
        bias=ParamAttr.to_bias(bias_attr),
5122 5123
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
Y
Yu Yang 已提交
5124 5125 5126 5127 5128
        name,
        LayerType.NCE_LAYER,
        parents=parents,
        size=l.config.size,
        activation=act)
5129

5130

5131 5132 5133
"""
following are cost Layers.
"""
5134 5135


5136
@wrap_name_default()
L
luotao1 已提交
5137
@layer_support()
5138 5139 5140 5141 5142 5143 5144
def rank_cost(left,
              right,
              label,
              weight=None,
              name=None,
              coeff=1.0,
              layer_attr=None):
5145
    """
5146
    A cost Layer for learning to rank using gradient descent. Details can refer
5147 5148
    to `papers <http://research.microsoft.com/en-us/um/people/cburges/papers/
    ICML_ranking.pdf>`_.
5149 5150 5151 5152 5153
    This layer contains at least three inputs. The weight is an optional
    argument, which affects the cost.

    .. math::

5154
       C_{i,j} & = -\\tilde{P_{ij}} * o_{i,j} + log(1 + e^{o_{i,j}})
5155

5156
       o_{i,j} & =  o_i - o_j
5157

5158
       \\tilde{P_{i,j}} & = \\{0, 0.5, 1\\} \ or \ \\{0, 1\\}
5159 5160 5161 5162 5163 5164 5165 5166

    In this formula:
      - :math:`C_{i,j}` is the cross entropy cost.
      - :math:`\\tilde{P_{i,j}}` is the label. 1 means positive order
        and 0 means reverse order.
      - :math:`o_i` and :math:`o_j`: the left output and right output.
        Their dimension is one.

5167
    The example usage is:
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187

    .. code-block:: python

      cost = rank_cost(left=out_left,
                       right=out_right,
                       label=label)

    :param left: The first input, the size of this layer is 1.
    :type left: LayerOutput
    :param right: The right input, the size of this layer is 1.
    :type right: LayerOutput
    :param label: Label is 1 or 0, means positive order and reverse order.
    :type label: LayerOutput
    :param weight: The weight affects the cost, namely the scale of cost.
                   It is an optional argument.
    :type weight: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5188 5189
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5190
    :return: LayerOutput object.
5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
    :rtype: LayerOutput
    """
    assert left.size == 1
    assert right.size == 1
    assert label.size == 1

    ipts = [left.name, right.name, label.name]
    parents = [left, right, label]
    if weight is not None:
        ipts.append(weight.name)
        parents.append(weight)

5203 5204 5205 5206 5207 5208
    Layer(
        name=name,
        type=LayerType.RANK_COST,
        inputs=ipts,
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5209

5210
    return LayerOutput(name, LayerType.RANK_COST, parents=parents, size=1)
5211

5212

5213
@wrap_name_default()
L
luotao1 已提交
5214
@layer_support()
5215 5216 5217 5218 5219 5220
def lambda_cost(input,
                score,
                name,
                NDCG_num=5,
                max_sort_size=-1,
                layer_attr=None):
5221 5222 5223
    """
    lambdaCost for lambdaRank LTR approach.

5224
    The example usage is:
5225 5226 5227 5228 5229 5230 5231 5232

    .. code-block:: python

      cost = lambda_cost(input=input,
                         score=score,
                         NDCG_num=8,
                         max_sort_size=-1)

5233
    :param input: Samples of the same query should be loaded as sequence.
5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244
    :type input: LayerOutput
    :param score: The 2nd input. Score of each sample.
    :type input: LayerOutput
    :param NDCG_num: The size of NDCG (Normalized Discounted Cumulative Gain),
                     e.g., 5 for NDCG@5. It must be less than for equal to the
                     minimum size of lists.
    :type NDCG_num: int
    :param max_sort_size: The size of partial sorting in calculating gradient.
                          If max_sort_size = -1, then for each list, the
                          algorithm will sort the entire list to get gradient.
                          In other cases, max_sort_size must be greater than or
5245 5246 5247
                          equal to NDCG_num. And if max_sort_size is greater
                          than the size of a list, the algorithm will sort the
                          entire list of get gradient.
5248 5249 5250
    :type max_sort_size: int
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
L
luotao1 已提交
5251 5252
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5253
    :return: LayerOutput object.
5254 5255
    :rtype: LayerOutput
    """
5256 5257 5258
    assert isinstance(input, LayerOutput) and isinstance(score, LayerOutput)
    if score.size is not None:
        assert score.size == 1
5259 5260 5261 5262 5263 5264 5265
    Layer(
        name=name,
        type=LayerType.LAMBDA_COST,
        inputs=[input.name, score.name],
        NDCG_num=NDCG_num,
        max_sort_size=max_sort_size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5266

5267 5268
    return LayerOutput(
        name, LayerType.LAMBDA_COST, parents=[input, score], size=1)
5269

5270

5271
@wrap_name_default()
L
luotao1 已提交
5272
@layer_support()
5273 5274 5275 5276 5277 5278
def cross_entropy(input,
                  label,
                  name=None,
                  coeff=1.0,
                  weight=None,
                  layer_attr=None):
5279 5280 5281
    """
    A loss layer for multi class entropy.

5282 5283
    The example usage is:

5284 5285
    .. code-block:: python

X
xuwei06 已提交
5286
       cost = cross_entropy(input=input_layer,
L
Luo Tao 已提交
5287
                            label=label_layer)
5288 5289 5290 5291 5292 5293 5294

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
5295 5296
    :param coeff: The cost is multiplied with coeff.
                  The coefficient affects the gradient in the backward.
5297
    :type coeff: float.
5298 5299 5300 5301
    :param weight: The cost of each sample is multiplied with each weight.
                   The weight should be a layer with size=1. Note that gradient
                   will not be calculated for weight.
    :type weight: LayerOutout
L
luotao1 已提交
5302 5303
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5304
    :return: LayerOutput object.
5305 5306 5307
    :rtype: LayerOutput.
    """

5308
    ipts, parents = __cost_input__(input, label, weight)
5309 5310 5311
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY,
5312
        inputs=ipts,
5313 5314
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5315
    return LayerOutput(name, LayerType.CROSS_ENTROPY, parents=parents, size=1)
5316

5317

5318
@wrap_name_default()
L
luotao1 已提交
5319
@layer_support()
5320 5321 5322 5323
def cross_entropy_with_selfnorm(input,
                                label,
                                name=None,
                                coeff=1.0,
L
luotao1 已提交
5324 5325
                                softmax_selfnorm_alpha=0.1,
                                layer_attr=None):
5326 5327
    """
    A loss layer for multi class entropy with selfnorm.
5328
    Input should be a vector of positive numbers, without normalization.
5329

5330 5331
    The example usage is:

5332 5333
    .. code-block:: python

X
xuwei06 已提交
5334
       cost = cross_entropy_with_selfnorm(input=input_layer,
L
Luo Tao 已提交
5335
                                          label=label_layer)
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
    :param softmax_selfnorm_alpha: The scale factor affects the cost.
    :type softmax_selfnorm_alpha: float.
L
luotao1 已提交
5347 5348
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5349
    :return: LayerOutput object.
5350 5351
    :rtype: LayerOutput.
    """
5352 5353 5354 5355 5356 5357 5358
    Layer(
        name=name,
        type=LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        inputs=[input.name, label.name],
        coeff=coeff,
        softmax_selfnorm_alpha=softmax_selfnorm_alpha,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5359

5360 5361 5362 5363 5364
    return LayerOutput(
        name,
        LayerType.CROSS_ENTROPY_WITH_SELFNORM,
        parents=[input, label],
        size=1)
5365

5366

X
xuwei06 已提交
5367 5368 5369 5370 5371 5372
@wrap_name_default()
@layer_support()
def sum_cost(input, name=None, layer_attr=None):
    """
    A loss layer which calculate the sum of the input as loss

5373 5374
    The example usage is:

X
xuwei06 已提交
5375 5376
    .. code-block:: python

L
Luo Tao 已提交
5377
       cost = sum_cost(input=input_layer)
X
xuwei06 已提交
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387

    :param input: The first input layer.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput.
    """
L
Luo Tao 已提交
5388
    assert isinstance(input, LayerOutput)
5389 5390 5391 5392 5393
    Layer(
        name=name,
        type=LayerType.SUM_COST,
        inputs=[input.name],
        **ExtraLayerAttribute.to_kwargs(layer_attr))
X
xuwei06 已提交
5394

5395
    return LayerOutput(name, LayerType.SUM_COST, parents=[input], size=1)
X
xuwei06 已提交
5396 5397


5398
@wrap_name_default()
L
luotao1 已提交
5399 5400
@layer_support()
def huber_cost(input, label, name=None, coeff=1.0, layer_attr=None):
5401 5402 5403
    """
    A loss layer for huber loss.

5404 5405
    The example usage is:

5406 5407
    .. code-block:: python

X
xuwei06 已提交
5408
       cost = huber_cost(input=input_layer,
L
Luo Tao 已提交
5409
                         label=label_layer)
5410 5411 5412 5413 5414 5415 5416 5417 5418

    :param input: The first input layer.
    :type input: LayerOutput.
    :param label: The input label.
    :type input: LayerOutput.
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring.
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float.
L
luotao1 已提交
5419 5420
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5421
    :return: LayerOutput object.
5422 5423
    :rtype: LayerOutput.
    """
5424 5425 5426
    assert isinstance(input, LayerOutput)
    if input.size is not None:
        assert input.size == 1
5427 5428 5429 5430 5431 5432
    Layer(
        name=name,
        type=LayerType.HUBER,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
5433
    return LayerOutput(name, LayerType.HUBER, parents=[input, label], size=1)
5434

5435

5436
@wrap_name_default()
L
luotao1 已提交
5437
@layer_support()
5438 5439 5440 5441
def multi_binary_label_cross_entropy(input,
                                     label,
                                     name=None,
                                     coeff=1.0,
L
luotao1 已提交
5442
                                     layer_attr=None):
5443 5444 5445
    """
    A loss layer for multi binary label cross entropy.

5446 5447
    The example usage is:

5448 5449
    .. code-block:: python

X
xuwei06 已提交
5450
       cost = multi_binary_label_cross_entropy(input=input_layer,
L
Luo Tao 已提交
5451
                                               label=label_layer)
5452 5453 5454 5455 5456 5457 5458 5459 5460

    :param input: The first input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
L
luotao1 已提交
5461 5462
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
D
dangqingqing 已提交
5463
    :return: LayerOutput object.
5464 5465 5466
    :rtype: LayerOutput
    """

5467 5468
    if input.activation is None or \
            not isinstance(input.activation, SigmoidActivation):
5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484
        logger.log(
            logging.WARN,
            "%s is not recommend for multi_binary_label_cross_entropy's activation, "
            "maybe the sigmoid is better" % repr(input.activation))

    Layer(
        name=name,
        type=LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        inputs=[input.name, label.name],
        coeff=coeff,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name,
        LayerType.MULTI_BIN_LABEL_CROSS_ENTROPY,
        parents=[input, label],
        size=1)
D
dangqingqing 已提交
5485 5486 5487 5488


@wrap_name_default()
@layer_support()
5489
def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None):
D
dangqingqing 已提交
5490 5491
    """
    This is a L1 loss but more smooth. It requires that the
D
dangqingqing 已提交
5492
    size of input and label are equal. The formula is as follows,
D
dangqingqing 已提交
5493 5494 5495 5496 5497 5498 5499 5500 5501

    .. math::

        L = \sum_{i} smooth_{L1}(input_i - label_i)

    in which

    .. math::

5502
        smooth_{L1}(x) = \\begin{cases} 0.5x^2& \\text{if}  \\ |x| < 1 \\\\ |x|-0.5& \\text{otherwise} \end{cases}
D
dangqingqing 已提交
5503

D
dangqingqing 已提交
5504 5505 5506
    More details can be found by referring to `Fast R-CNN
    <https://arxiv.org/pdf/1504.08083v2.pdf>`_

5507 5508
    The example usage is:

D
dangqingqing 已提交
5509 5510
    .. code-block:: python

5511 5512
       cost = smooth_l1_cost(input=input_layer,
                             label=label_layer)
D
dangqingqing 已提交
5513 5514 5515 5516 5517 5518 5519

    :param input: The input layer.
    :type input: LayerOutput
    :param label: The input label.
    :type input: LayerOutput
    :param name: The name of this layers. It is not necessary.
    :type name: None|basestring
5520 5521
    :param coeff: The coefficient affects the gradient in the backward.
    :type coeff: float
D
dangqingqing 已提交
5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534
    :param layer_attr: Extra Layer Attribute.
    :type layer_attr: ExtraLayerAttribute
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    assert isinstance(input, LayerOutput)
    assert isinstance(label, LayerOutput)
    assert input.size == label.size

    Layer(
        name=name,
        type=LayerType.SMOOTH_L1,
        inputs=[input.name, label.name],
5535
        coeff=coeff,
D
dangqingqing 已提交
5536 5537 5538
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.SMOOTH_L1, parents=[input, label], size=1)
5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557


@wrap_name_default()
def multiplex_layer(input, name=None, layer_attr=None):
    """
    This layer multiplex multiple layers according to the index,
    which is provided by the first input layer.
    inputs[0]: the index of the layer to output of size batchSize.
    inputs[1:N]; the candidate output data.
    For each index i from 0 to batchSize -1, the output is the i-th row of the
    (index[i] + 1)-th layer.

    For each i-th row of output:
    .. math::
        y[i][j] = x_{x_{0}[i] + 1}[i][j], j = 0,1, ... , (x_{1}.width - 1)

    where, y is output. :math:`x_{k}` is the k-th input layer and
    :math:`k = x_{0}[i] + 1`.

5558 5559
    The example usage is:

5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591
    .. code-block:: python

       maxid = multiplex_layer(input=layers)

    :param input: Input layers.
    :type input: list of LayerOutput
    :param name: Layer name.
    :type name: basestring
    :param layer_attr: extra layer attributes.
    :type layer_attr: ExtraLayerAttribute.
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

    assert isinstance(input, collections.Sequence)
    assert len(input) > 2, 'multiplex_layer should have more than 2 inputs'
    for i in range(1, len(input)):
        assert isinstance(input[i], LayerOutput)
        assert input[i].size == input[1].size, \
            "All the input layers except the first one should have the same size"

    l = Layer(
        name=name,
        type='multiplex',
        inputs=[x.name for x in input],
        size=input[1].size,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.MULTIPLEX_LAYER,
        parents=input,
        size=l.config.size)
D
dangqingqing 已提交
5592 5593


5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609
@wrap_name_default("dropout")
def dropout_layer(input, dropout_rate, name=None):
    """
    @TODO(yuyang18): Add comments.

    :param name:
    :param input:
    :param dropout_rate:
    :return:
    """
    return addto_layer(
        name=name,
        input=input,
        act=LinearActivation(),
        bias_attr=False,
        layer_attr=ExtraAttr(drop_rate=dropout_rate))
5610 5611


D
dangqingqing 已提交
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
@wrap_name_default()
@wrap_act_default(act=LinearActivation())
@wrap_param_attr_default()
@layer_support(DROPOUT)
def row_conv_layer(input,
                   context_len,
                   act=None,
                   name=None,
                   param_attr=None,
                   layer_attr=None):
    """

    The row convolution is called lookahead convolution. It is firstly
    introduced in paper of `Deep Speech 2: End-toEnd Speech Recognition
    in English and Mandarin <https://arxiv.org/pdf/1512.02595v1.pdf>`_ .

    The bidirectional RNN that learns representation for a sequence by
    performing a forward and a backward pass through the entire sequence.
    However, unlike unidirectional RNNs, bidirectional RNNs are challenging
    to deploy in an online and low-latency setting. The lookahead convolution
    incorporates information from future subsequences in a computationally
    efficient manner to improve unidirectional recurrent neural networks.
5634

D
dangqingqing 已提交
5635 5636 5637 5638 5639
    The connection of row convolution is different form the 1D sequence
    convolution. Assumed that, the future context-length is k, that is to say,
    it can get the output at timestep t by using the the input feature from t-th
    timestep to (t+k+1)-th timestep. Assumed that the hidden dim of input
    activations are d, the activations r_t for the new layer at time-step t are:
5640

D
dangqingqing 已提交
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683
    .. math::

        r_{t,r} = \sum_{j=1}^{k + 1} {w_{i,j}h_{t+j-1, i}}
                  \quad \text{for} \quad  (1 \leq i \leq d)

    Note:
        The `context_len` is `k + 1`. That is to say, the lookahead step
        number plus one equals context_len.


    .. code-block:: python

       row_conv = row_conv_layer(input=input_layer, context_len=3)


    :param input: The input layer.
    :type input: LayerOutput
    :param context_len: The context length equals the lookahead step number
                        plus one.
    :type context_len: int
    :param act: Activation Type. Default is linear activation.
    :type act: BaseActivation
    :param param_attr: The Parameter Attribute. If None, the parameter will be
                       initialized smartly. It's better set it by yourself.
    :type param_attr: ParameterAttribute
    :param layer_attr: Extra Layer config.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput

    """
    assert isinstance(input, LayerOutput)
    assert context_len > 0, "the context_len must be greatet than 0."

    Layer(
        inputs=[Input(input.name, **param_attr.attr)],
        name=name,
        context_length=context_len,
        type=LayerType.ROW_CONV_LAYER,
        active_type=act.name,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name, LayerType.ROW_CONV_LAYER, input, activation=act, size=input.size)
D
dangqingqing 已提交
5684 5685


5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704
@layer_support()
@wrap_name_default()
@wrap_param_attr_default()
def prelu_layer(input,
                name=None,
                partial_sum=1,
                param_attr=None,
                layer_attr=None):
    """
    The Parameter Relu activation that actives outputs with a learnable weight.

    Reference:
        Delving Deep into Rectifiers: Surpassing Human-Level Performance on
        ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf

    .. math::
       z_i &\\quad if \\quad z_i > 0 \\\\
       a_i * z_i  &\\quad \\mathrm{otherwise}

5705 5706 5707 5708 5709 5710
    The example usage is:

    .. code-block:: python

       prelu = prelu_layer(input=layers, partial_sum=1)

5711 5712 5713 5714 5715
    :param name: Name of this layer.
    :type name: basestring
    :param input: The input layer.
    :type input: LayerOutput
    :param partial_sum: this parameter makes a group of inputs share a same weight.
5716 5717 5718 5719 5720 5721

        - partial_sum = 1, indicates the element-wise activation: each element has a weight.
        - partial_sum = number of elements in one channel, indicates the channel-wise activation, elements in a channel share a same weight.
        - partial_sum = number of outputs, indicates all elements share a same weight.

    :type partial_sum: int
5722 5723 5724 5725 5726 5727 5728 5729
    :param param_attr: The parameter attribute. See ParameterAttribute for details.
    :type param_attr: ParameterAttribute|None
    :param layer_attr: Extra layer configurations. Default is None.
    :type layer_attr: ExtraLayerAttribute|None
    :return: LayerOutput object.
    :rtype: LayerOutput
    """

C
caoying03 已提交
5730 5731
    assert isinstance(input, LayerOutput), 'prelu_layer only accepts one input'
    assert isinstance(param_attr, ParameterAttribute)
5732 5733 5734

    l = Layer(
        name=name,
5735
        type=LayerType.PRELU,
C
caoying03 已提交
5736
        inputs=Input(input.name, **param_attr.attr),
5737 5738 5739 5740 5741 5742 5743
        partial_sum=partial_sum,
        **ExtraLayerAttribute.to_kwargs(layer_attr))
    return LayerOutput(
        name=name,
        layer_type=LayerType.PRELU,
        parents=input,
        size=l.config.size)
新手
引导
客服 返回
顶部