提交 7f1d6c5a 编写于 作者: D dangqingqing

Fix some documentations.

ISSUE=4611579

git-svn-id: https://svn.baidu.com/idl/trunk/paddle@1473 1ad973e4-5ce8-4261-8a94-b56d1f490c56
上级 80790017
......@@ -45,5 +45,5 @@ sphinx_add_target(paddle_docs
${SPHINX_HTML_DIR})
add_dependencies(paddle_docs
gen_proto_py
paddle_doxygen_docs)
\ No newline at end of file
gen_proto_py)
#paddle_doxygen_docs)
......@@ -173,7 +173,7 @@ python -m paddle.utils.plotcurve -i $log > plot.png
- The script `plotcurve.py` requires the python module of `matplotlib`, so if it fails, maybe you need to install `matplotlib`.
After training finishes, the training and testing error curve will be saved to `plot.png` using `plotcurve.py` script. An example of the plot is shown below:
After training finishes, the training and testing error curves will be saved to `plot.png` using `plotcurve.py` script. An example of the plot is shown below:
<center>![Training and testing curves.](./plot.png)</center>
......
# Model Zoo - ImageNet #
[ImageNet](http://www.image-net.org/) is a popular dataset for generic object classification. This tutorial provided convolutional neural network(CNN) models for ImageNet.
[ImageNet](http://www.image-net.org/) is a popular dataset for generic object classification. This tutorial provides convolutional neural network(CNN) models for ImageNet.
## ResNet Introduction
......@@ -48,11 +48,11 @@ We present three ResNet models, which are converted from the models provided by
## ResNet Model
See ```demo/model_zoo/resnet/resnet.py```. This confgiure contains network of 50, 101 and 152 layers. You can specify layer number by adding argument like this ```--config_args=layer_num=50``` in command line arguments.
See ```demo/model_zoo/resnet/resnet.py```. This config contains network of 50, 101 and 152 layers. You can specify layer number by adding argument like ```--config_args=layer_num=50``` in command line arguments.
### Network Visualization
You can get a diagram of ResNet network by running the following command. The script generates dot file and then converts dot file to PNG file, which uses installed draw_dot tool in our server. If you can not access the server, just install graphviz to convert dot file.
You can get a diagram of ResNet network by running the following commands. The script generates dot file and then converts dot file to PNG file, which uses installed draw_dot tool in our server. If you can not access the server, just install graphviz to convert dot file.
```
cd demo/model_zoo/resnet
......@@ -190,8 +190,7 @@ Second, specify layers to extract features in `Outputs()` of `resnet.py`. For ex
Outputs("res5_3_branch2c_conv", "res5_3_branch2c_bn")
```
Third, specify model path and output directory in `extract_fea_c++.sh
`, and then run following commands
Third, specify model path and output directory in `extract_fea_c++.sh`, and then run the following commands.
```
cd demo/model_zoo/resnet
......
......@@ -10,7 +10,7 @@ customized, with sacrificing the efficiency only a little. This is extremly
useful when you have to dynamically generate certain kinds of data according to,
for example, the training performance.
Besides, users also can also customize a C++ :code:`DataProvider` for a more
Besides, users also can customize a C++ :code:`DataProvider` for a more
complex usage, or for a higher efficiency.
The following parameters are required to define in the PaddlePaddle network
......
......@@ -17,10 +17,10 @@ how to write a simple PyDataProvider.
MNIST is a handwriting classification data set. It contains 70,000 digital
grayscale images. Labels of the training sample range from 0 to 9. All the
images have been size-normalized and centered into images with a same size
images have been size-normalized and centered into images with the same size
of 28 x 28 pixels.
A small part of the original data as an example can be found in the path below:
A small part of the original data as an example is shown as below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_train.txt
......@@ -31,10 +31,9 @@ Just write path of the above data into train.list. It looks like this:
.. literalinclude:: ../../../doc_cn/ui/data_provider/train.list
The corresponding dataprovider can be found in the path below:
The corresponding dataprovider is shown as below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_provider.py
: linenos:
The first line imports PyDataProvider2 package.
The main function is the process function, that has two parameters.
......@@ -45,8 +44,8 @@ This parameter is passed to the process function by PaddlePaddle.
:code:`@provider` is a Python
`Decorator <http://www.learnpython.org/en/Decorators>`_ .
It sets some properties to DataProvider, and constructs a real PaddlePaddle
DataProvider from a very sample user implemented python function. It does not
matter if you are not familiar with `Decorator`_. You can keep it sample by
DataProvider from a very simple user implemented python function. It does not
matter if you are not familiar with `Decorator`_. You can keep it simple by
just taking :code:`@provider` as a fixed mark above the provider function you
implemented.
......@@ -59,9 +58,9 @@ document of `input_types`_ for more details.
The process method is the core part to construct a real DataProvider in
PaddlePaddle. It implements how to open the text file, how to read one sample
from the original text file, converted them into `input_types`_, and give them
from the original text file, convert them into `input_types`_, and give them
back to PaddlePaddle process at line 23.
Note that data yields by the process function must follow a same order that
Note that data yielded by the process function must follow the same order that
`input_types`_ are defined.
......@@ -111,7 +110,7 @@ The corresponding data provider can be found in the path below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_provider.py
This data provider for sequential model is a little bit complex than that
This data provider for sequential model is a little more complex than that
for MINST dataset.
A new initialization method is introduced here.
The method :code:`on_init` is configured to DataProvider by :code:`@provider`'s
......@@ -243,7 +242,7 @@ parameters which your init_hook does not use.
cache
+++++
DataProvider provides two simple cache strategy. They are
* CacheType.NO_CACHE means do not cache any data, then data is read runtime by
* CacheType.NO_CACHE means do not cache any data, then data is read at runtime by
the user implemented python module every pass.
* CacheType.CACHE_PASS_IN_MEM means the first pass reads data by the user
implemented python module, and the rest passes will directly read data from
......
......@@ -613,7 +613,7 @@ def data_layer(name, size, layer_attr=None):
:type size: int
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute.
:return: Layer Output Object.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(type=LayerType.DATA, name=name, size=size,
......@@ -640,7 +640,7 @@ def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None):
:type param_attr: ParameterAttribute|None
:param layer_attr: Extra layer Config. Default is None.
:type layer_attr: ExtraLayerAttribute|None
:return: Embedding Layer output
:return: LayerOutput object.
:rtype: LayerOutput
"""
with mixed_layer(name=name, size=size, act=LinearActivation(),
......@@ -692,7 +692,7 @@ def fc_layer(input, size, act=None, name=None,
:type bias_attr: ParameterAttribute|None|Any
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
:return: Layer Name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
if isinstance(input, LayerOutput):
......@@ -756,7 +756,7 @@ def pooling_layer(input, pooling_type=None, name=None, bias_attr=None,
:type bias_attr: ParameterAttribute|None|False
:param layer_attr: The Extra Attributes for layer, such as dropout.
:type layer_attr: ExtraLayerAttribute|None
:return: layer name.
:return: LayerOutput object.
:rtype: LayerType
"""
extra_dict = dict()
......@@ -842,7 +842,7 @@ def lstmemory(input, name=None, reverse=False, act=None,
:type param_attr: ParameterAttribute|None|False
:param layer_attr: Extra Layer attribute
:type layer_attr: ExtraLayerAttribute|None
:return: Layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -943,7 +943,7 @@ def grumemory(input, name=None, reverse=False, act=None,
:type param_attr: ParameterAttribute|None|False
:param layer_attr: Extra Layer attribute
:type layer_attr: ExtraLayerAttribute|None
:return: Layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -977,7 +977,7 @@ def last_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP,
:type input: LayerOutput
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -1005,7 +1005,7 @@ def first_seq(input, name=None, agg_level=AggregateLevel.EACH_TIMESTEP,
:type input: LayerOutput
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -1055,7 +1055,7 @@ def expand_layer(input, expand_as,
:type expand_level: ExpandLevel
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -1102,7 +1102,7 @@ def interpolation_layer(input, weight, name=None, layer_attr=None):
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, list) or isinstance(input, tuple)
......@@ -1147,7 +1147,7 @@ def power_layer(input, weight, name=None, layer_attr=None):
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert weight.size == 1
......@@ -1187,7 +1187,7 @@ def scaling_layer(input, weight, name=None, layer_attr=None):
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert weight.size == 1
......@@ -1224,7 +1224,7 @@ def trans_layer(input, name=None, layer_attr=None):
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -1244,8 +1244,8 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
Cosine Similarity Layer. The cosine similarity equation is here.
.. math::
similarity = cos(\\theta) = {\\mathbf{A} \\cdot \\mathbf{B}
\\over \\|\\mathbf{A}\\| \\|\\mathbf{B}\\|}
similarity = cos(\\theta) = {\\mathbf{a} \\cdot \\mathbf{b}
\\over \\|\\mathbf{b}\\| \\|\\mathbf{b}\\|}
And the input dimension is :math:`a \in R^M`, :math:`b \in R^{MN}`. The
similarity will be calculated N times by step M. The output dimension is
......@@ -1263,7 +1263,7 @@ def cos_sim(a, b, scale=5, size=1, name=None, layer_attr=None):
:type size: int
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -1308,7 +1308,7 @@ def hsigmoid(input, label, num_classes, name=None, bias_attr=None, layer_attr=No
:type bias_attr: ParameterAttribute|False
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
if isinstance(input, LayerOutput):
......@@ -1400,7 +1400,7 @@ def img_conv_layer(input, filter_size, num_filters,
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:return: Layer output.
:return: LayerOutput object.
:rtype: LayerOutput
"""
if num_channels is None:
......@@ -1464,7 +1464,8 @@ def img_pool_layer(input, pool_size, name=None,
:type start: int
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:return: LayerOutput
:return: LayerOutput object.
:rtype: LayerOutput
"""
if num_channels is None:
assert input.num_filters is not None
......@@ -1514,29 +1515,30 @@ def __img_norm_layer__(name, input, size, norm_type, scale, power,
@wrap_name_default("crmnorm")
@layer_support()
def img_cmrnorm_layer(input, size, scale, power, name=None, num_channels=None,
def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75,
name=None, num_channels=None,
blocked=0, layer_attr=None):
"""
Convolution cross-map-response-normalize layer.
TODO(yuyang18): Add reference and equations, to explain why cmr is work?
The details please refer to
`Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
:param name: layer name.
:type name: basestring
:type name: None|basestring
:param input: layer's input.
:type input: LayerOutput
:param size: cross map response size.
:type size: int
:param scale: TODO(yuyang18)
:param scale: The hyper-parameter.
:type scale: float
:param power: TODO(yuyang18)
:param power: The hyper-parameter.
:type power: float
:param num_channels: input layer's filers number or channels. If
num_channels is None, it will be set automatically.
:param blocked: TODO(yuyang18)
:param blocked: namely normalize in number of blocked feature maps.
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: Layer's output
:return: LayerOutput object.
:rtype: LayerOutput
"""
return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
......@@ -1548,19 +1550,19 @@ def img_cmrnorm_layer(input, size, scale, power, name=None, num_channels=None,
def img_rnorm_layer(input, size, scale, power, name=None, num_channels=None,
layer_attr=None):
"""
TODO(yuyang18): add comments
TODO(yuyang18): Why it is always not implemented whenever use_gpu or not?
Normalize the input in local region, namely response normalization
across feature maps.
:param name:
:param input:
:param name: The name of this layer.
:rtype name: None|basestring
:param input: The input of this layer.
:param size:
:param scale:
:param power:
:param num_channels:
:param layer_attr:
:return:
:return: LayerOutput object.
:rtype: LayerOutput
"""
return __img_norm_layer__(name, input, size, 'rnorm', scale, power,
num_channels, 0, layer_attr)
......@@ -1637,7 +1639,7 @@ def batch_norm_layer(input, act=None, name=None, num_channels=None,
:math:`runningMean = newMean*(1-factor)
+ runningMean*factor`
:type moving_average_fraction: float.
:return: Layer's output
:return: LayerOutput object.
:rtype: LayerOutput
"""
if not isinstance(act, ReluActivation):
......@@ -1701,7 +1703,7 @@ def sum_to_one_norm_layer(input, name=None, layer_attr=None):
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -1761,7 +1763,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None,
:type bias_attr: ParameterAttribute|bool
:param layer_attr: Extra Layer attribute.
:type layer_attr: ExtraLayerAttribute
:return: layer's output
:return: LayerOutput object.
:rtype: LayerOutput
"""
num_filters = None
......@@ -1803,7 +1805,7 @@ def concat_layer(input, act=None, name=None, layer_attr=None):
:type act: BaseActivation
:param layer_attr: Extra Layer Attribute.
:type layer_attr: ExtraLayerAttribute
:return: layer's output
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -1901,7 +1903,7 @@ def memory(name, size, is_seq=False, boot_layer=None,
:type boot_bias_active_type: BaseActivation
:param boot_with_const_id: boot layer's id.
:type boot_with_const_id: int
:return: Memory layer's output
:return: LayerOutput object which is a memory.
:rtype: LayerOutput
"""
if boot_bias_active_type is None:
......@@ -1993,7 +1995,7 @@ def lstm_step_layer(input, state, size, act=None,
:type bias_attr: ParameterAttribute
:param layer_attr: layer's extra attribute.
:type layer_attr: ExtraLayerAttribute
:return: lstm step's layer output
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -2032,7 +2034,7 @@ def gru_step_layer(input, output_mem, size=None, act=None,
:param gate_act:
:param bias_attr:
:param layer_attr:
:return:
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert input.size % 3 == 0
......@@ -2073,7 +2075,7 @@ def get_output_layer(input, arg_name, name=None, layer_attr=None):
:param arg_name: Output name from input.
:type arg_name: basestring
:param layer_attr: Layer's extra attribute.
:return: Layer's output
:return: LayerOutput object.
:rtype: LayerOutput
"""
# GetOutputLayer
......@@ -2107,7 +2109,7 @@ def recurrent_layer(input, act=None, bias_attr=None,
:param param_attr:
:param name:
:param layer_attr:
:return:
:return: LayerOutput object.
"""
Layer(name=name,
type=LayerType.RECURRENT_LAYER,
......@@ -2201,7 +2203,7 @@ def recurrent_group(step, input, reverse=False, name=None):
:param reverse: If reverse is set true, the recurrent unit will process the
input sequence in a reverse order.
:type reverse: bool
:return: Layer output object
:return: LayerOutput object.
:rtype: LayerOutput
"""
model_type('recurrent_nn')
......@@ -2319,7 +2321,7 @@ def maxid_layer(input, name=None, layer_attr=None):
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -2356,7 +2358,7 @@ def eos_layer(input, eos_id, name=None, layer_attr=None):
:type eos_id: int
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(name=name,
......@@ -2528,7 +2530,7 @@ def regression_cost(input, label, cost='square_error', name=None):
:param input: Network prediction.
:param label: Data label.
:param cost: Cost method.
:return: layer name.
:return: LayerOutput object.
"""
Layer(inputs=[Input(input.name), Input(label.name)], type=cost, name=name)
return LayerOutput(
......@@ -2552,7 +2554,7 @@ def classification_cost(input, label, name=None,
:param cost: cost method.
:type cost: basestring
:param evaluator: Evaluator method.
:return: layer name.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert input.layer_type != LayerType.DATA
......@@ -2667,7 +2669,7 @@ def conv_shift_layer(input, name=None):
:type name: basestring
:param input: Input layer.
:type input: LayerOutput|list|tuple.
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, list) or isinstance(input, tuple)
......@@ -2722,7 +2724,7 @@ def tensor_layer(input, size, act=None, name=None,
:type bias_attr: ParameterAttribute|None|Any
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, list) or isinstance(input, tuple)
......@@ -2816,7 +2818,7 @@ def selective_fc_layer(input, size, act=None, name=None,
:type bias_attr: ParameterAttribute|None|Any
:param layer_attr: Extra Layer config.
:type layer_attr: ExtraLayerAttribute|None
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
if isinstance(input, LayerOutput):
......@@ -2867,7 +2869,7 @@ def sampling_id_layer(input, name=None):
:type input: LayerOutput
:param name: The Layer Name.
:type name: basestring
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -2901,7 +2903,7 @@ def slope_intercept_layer(input, name=None, slope=1.0, intercept=0.0):
:type slope: float.
:param intercept: the offset.
:type intercept: float.
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(
......@@ -2946,7 +2948,7 @@ def convex_comb_layer(input, size, name=None):
:type size: int
:param name: The Layer Name.
:type name: basestring
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -3016,7 +3018,7 @@ def block_expand_layer(input,
:type padding_y: int
:param name: The name of this layer, which can not specify.
:type name: None|basestring.
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(name=name,
......@@ -3061,7 +3063,7 @@ def ctc_layer(input, label, size, name=None, norm_by_times=False):
:type name: string|None
:param norm_by_times: Whether to normalization by times. False by default.
:type norm_by_times: bool
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput)
......@@ -3102,7 +3104,7 @@ def crf_layer(input, label, size, weight=None, param_attr=None, name=None):
:type param_attr: ParameterAttribute
:param name: The name of this layers. It is not necessary.
:type name: None|basestring
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput)
......@@ -3144,7 +3146,7 @@ def crf_decoding_layer(input, size, label=None, param_attr=None, name=None):
:type param_attr: ParameterAttribute
:param name: The name of this layers. It is not necessary.
:type name: None|basestring
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
......@@ -3213,7 +3215,7 @@ def rank_cost(left, right, lable, weight=None, name=None, coeff=1.0):
:type name: None|basestring
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert left.size == 1
......@@ -3270,7 +3272,7 @@ def lambda_cost(input, score, NDCG_num=5, max_sort_size=-1, coeff=1.0):
:type name: None|basestring
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer(name=name,
......@@ -3302,7 +3304,7 @@ def cross_entropy(input, label, name=None, coeff=1.0):
:type name: None|basestring.
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float.
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput.
"""
......@@ -3335,7 +3337,7 @@ def cross_entropy_with_selfnorm(input, label, name=None, coeff=1.0,
:type coeff: float.
:param softmax_selfnorm_alpha: The scale factor affects the cost.
:type softmax_selfnorm_alpha: float.
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput.
"""
Layer(name=name,
......@@ -3368,7 +3370,7 @@ def huber_cost(input, label, name=None, coeff=1.0):
:type name: None|basestring.
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float.
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput.
"""
......@@ -3398,7 +3400,7 @@ def multi_binary_label_cross_entropy(input, label, name=None, coeff=1.0):
:type name: None|basestring
:param coeff: The coefficient affects the gradient in the backward.
:type coeff: float
:return: a object of LayerOutput.
:return: LayerOutput object.
:rtype: LayerOutput
"""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册