Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fc0ad904
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fc0ad904
编写于
6月 13, 2017
作者:
X
xuwei06
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Repeat layer for column vector
上级
14c0e71d
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
97 addition
and
39 deletion
+97
-39
paddle/gserver/layers/FeatureMapExpandLayer.cpp
paddle/gserver/layers/FeatureMapExpandLayer.cpp
+54
-24
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+9
-6
python/paddle/trainer/config_parser.py
python/paddle/trainer/config_parser.py
+9
-1
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+25
-8
未找到文件。
paddle/gserver/layers/FeatureMapExpandLayer.cpp
浏览文件 @
fc0ad904
...
...
@@ -40,6 +40,7 @@ namespace paddle {
class
FeatureMapExpandLayer
:
public
Layer
{
private:
int
numFilters_
;
bool
asRowVector_
;
public:
explicit
FeatureMapExpandLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
...
...
@@ -62,6 +63,7 @@ bool FeatureMapExpandLayer::init(const LayerMap& layerMap,
CHECK_EQ
(
inputLayers_
.
size
(),
1UL
);
numFilters_
=
config_
.
num_filters
();
asRowVector_
=
config_
.
user_arg
()
!=
"as_col_vec"
;
return
true
;
}
...
...
@@ -76,16 +78,30 @@ void FeatureMapExpandLayer::forward(PassType passType) {
{
AsyncGpuBlock
asyncGpuBlock
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outVTmp
=
Matrix
::
create
(
outputV
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inVTmp
=
Matrix
::
create
(
inputV
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
outVTmp
->
addRowVector
(
*
inVTmp
);
if
(
asRowVector_
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outVTmp
=
Matrix
::
create
(
outputV
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inVTmp
=
Matrix
::
create
(
inputV
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
outVTmp
->
addRowVector
(
*
inVTmp
);
}
}
else
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outVTmp
=
Matrix
::
create
(
outputV
->
getData
()
+
i
*
imgSize
*
numFilters_
,
imgSize
,
numFilters_
,
false
,
useGpu_
);
MatrixPtr
inVTmp
=
Matrix
::
create
(
inputV
->
getData
()
+
i
*
imgSize
,
imgSize
,
1
,
false
,
useGpu_
);
outVTmp
->
addColVector
(
*
inVTmp
);
}
}
}
/* activation */
{
...
...
@@ -102,24 +118,38 @@ void FeatureMapExpandLayer::backward(const UpdateCallback& callback) {
MatrixPtr
outGrad
=
getOutputGrad
();
size_t
batchSize
=
getInput
(
0
).
getBatchSize
();
int
imgSize
=
inGrad
->
getWidth
();
/* Do activation */
{
REGISTER_TIMER_INFO
(
"BpAvtTimer"
,
getName
().
c_str
());
backwardActivation
();
}
{
AsyncGpuBlock
asyncGpuBlock
;
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outGradTmp
=
Matrix
::
create
(
outGrad
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inGradTmp
=
Matrix
::
create
(
inGrad
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
inGradTmp
->
collectBias
(
*
outGradTmp
,
1
);
if
(
asRowVector_
)
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outGradTmp
=
Matrix
::
create
(
outGrad
->
getData
()
+
i
*
imgSize
*
numFilters_
,
numFilters_
,
imgSize
,
false
,
useGpu_
);
MatrixPtr
inGradTmp
=
Matrix
::
create
(
inGrad
->
getData
()
+
i
*
imgSize
,
1
,
imgSize
,
false
,
useGpu_
);
inGradTmp
->
collectBias
(
*
outGradTmp
,
1
);
}
}
else
{
for
(
size_t
i
=
0
;
i
<
batchSize
;
i
++
)
{
MatrixPtr
outGradTmp
=
Matrix
::
create
(
outGrad
->
getData
()
+
i
*
imgSize
*
numFilters_
,
imgSize
,
numFilters_
,
false
,
useGpu_
);
MatrixPtr
inGradTmp
=
Matrix
::
create
(
inGrad
->
getData
()
+
i
*
imgSize
,
imgSize
,
1
,
false
,
useGpu_
);
inGradTmp
->
sumRows
(
*
outGradTmp
,
1
,
1
);
}
}
}
/* Do derivation */
{
REGISTER_TIMER_INFO
(
"BpAvtTimer"
,
getName
().
c_str
());
backwardActivation
();
}
}
}
// namespace paddle.
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
fc0ad904
...
...
@@ -1598,12 +1598,15 @@ TEST(Layer, FeatureMapExpandLayer) {
/* paraSize= */
0
});
config
.
layerConfig
.
add_inputs
();
for
(
auto
useGpu
:
{
false
,
true
})
{
testLayerGrad
(
config
,
"featmap_expand"
,
/*batch_size*/
100
,
/* trans= */
false
,
useGpu
,
/* useWeight */
true
);
for
(
auto
asRowVec
:
{
false
,
true
})
{
config
.
layerConfig
.
set_user_arg
(
asRowVec
?
"as_row_vec"
:
"as_col_vec"
);
testLayerGrad
(
config
,
"featmap_expand"
,
/*batch_size*/
100
,
/* trans= */
false
,
useGpu
,
/* useWeight */
true
);
}
}
}
...
...
python/paddle/trainer/config_parser.py
浏览文件 @
fc0ad904
...
...
@@ -2428,7 +2428,13 @@ class ExpandLayer(LayerBase):
@
config_layer
(
'featmap_expand'
)
class
FeatMapExpandLayer
(
LayerBase
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
num_filters
=
None
,
bias
=
False
):
def
__init__
(
self
,
name
,
inputs
,
device
=
None
,
num_filters
=
None
,
as_row_vector
=
True
,
bias
=
False
):
super
(
FeatMapExpandLayer
,
self
).
__init__
(
name
,
'featmap_expand'
,
0
,
inputs
=
inputs
,
device
=
device
)
config_assert
(
...
...
@@ -2437,6 +2443,8 @@ class FeatMapExpandLayer(LayerBase):
self
.
config
.
num_filters
=
num_filters
else
:
logger
.
fatal
(
"FeatMapExpandLayer must specify num_filters."
)
if
not
as_row_vector
:
self
.
config
.
user_arg
=
"as_col_vec"
self
.
set_layer_size
(
self
.
get_input_layer
(
0
).
size
*
num_filters
)
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
fc0ad904
...
...
@@ -1566,13 +1566,21 @@ def expand_layer(input,
@
wrap_name_default
()
@
layer_support
()
def
repeat_layer
(
input
,
num_repeats
,
name
=
None
,
layer_attr
=
None
):
def
repeat_layer
(
input
,
num_repeats
,
as_row_vector
=
True
,
name
=
None
,
layer_attr
=
None
):
"""
A layer for repeating the input for num_repeats times. This is equivalent
to apply concat_layer() with num_repeats same input.
A layer for repeating the input for num_repeats times.
If as_row_vector:
.. math::
y = [x, x, \cdots, x]
y = [x_1,\cdots, x_n, \cdots, x_1, \cdots, x_n]
If not as_row_vector:
.. math::
y = [x_1,\cdots, x_1, \cdots, x_n, \cdots, x_n]
The example usage is:
...
...
@@ -1585,6 +1593,12 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
:param num_repeats: Repeat the input so many times
:type num_repeats: int
:param name: Layer name.
:param as_row_vector: True for treating input as row vector and repeating
in the column direction. This is equivalent to apply
concat_layer() with num_repeats same input.
False for treating input as column vector and repeating
in the row direction.
:type as_row_vector: bool
:type name: basestring
:param layer_attr: extra layer attributes.
:type layer_attr: ExtraLayerAttribute.
...
...
@@ -1596,6 +1610,7 @@ def repeat_layer(input, num_repeats, name=None, layer_attr=None):
inputs
=
[
input
.
name
],
name
=
name
,
num_filters
=
num_repeats
,
as_row_vector
=
as_row_vector
,
type
=
LayerType
.
FEATURE_MAP_EXPAND_LAYER
,
**
ExtraAttr
.
to_kwargs
(
layer_attr
))
return
LayerOutput
(
...
...
@@ -2846,17 +2861,19 @@ def seq_concat_layer(a, b, act=None, name=None, layer_attr=None,
Concat sequence a with sequence b.
Inputs:
- a = [a1, a2, ..., a
n
]
- a = [a1, a2, ..., a
m
]
- b = [b1, b2, ..., bn]
- Note that the length of a and b should be the same.
Output: [a1, b1, a2, b2, ..., an, bn]
Output: [a1, ..., am, b1, ..., bn]
Note that the above computation is for one sample. Multiple samples are
processed in one batch.
The example usage is:
.. code-block:: python
concat = seq_concat_layer(a=layer1, b=layer2)
concat = seq_concat_layer(a
l
=layer1, b=layer2)
:param name: Layer name.
:type name: basestring
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录