elementwise_add_op.h 17.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
fengjiayi 已提交
14 15
#pragma once

16 17
#include <algorithm>
#include <utility>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
20
#include "paddle/fluid/operators/math/blas.h"
21
#include "paddle/fluid/operators/math/math_function.h"
22

23
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
24
#ifdef __NVCC__
25 26
#include <cuda.h>
#include <cuda_fp16.h>
27
#include "cub/cub.cuh"
28

29
#endif
30 31 32 33 34 35
#ifdef __HIPCC__
#include <hip/hip_fp16.h>
#include <hip/hip_runtime.h>
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
36
#endif
W
wanghuancoder 已提交
37

G
gongweibao 已提交
38 39 40
namespace paddle {
namespace operators {

41
template <typename DeviceContext, typename T>
42 43 44 45
void LaunchBroadcastElementwiseCpuKernel(const framework::ExecutionContext &ctx,
                                         const framework::Tensor *x,
                                         const framework::Tensor *y,
                                         framework::Tensor *z) {
46
  int axis = ctx.Attr<int>("axis");
47 48 49
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
50 51 52 53 54 55
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
56 57
}

58 59 60 61 62 63
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
64

Q
QI JUN 已提交
65
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
66
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
67
 public:
C
chengduo 已提交
68 69 70 71
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
72
    z->mutable_data<T>(ctx.GetPlace());
73
    if (x->dims() == y->dims()) {
74
      SameDimsElemwiseAdd<DeviceContext, T> LaunchElementwiseCpuKernel;
75
      LaunchElementwiseCpuKernel(ctx, x, y, z);
76
    } else {
77
      LaunchBroadcastElementwiseCpuKernel<DeviceContext, T>(ctx, x, y, z);
78
    }
G
gongweibao 已提交
79 80 81 82
  }
};

template <typename T>
Y
Yu Yang 已提交
83 84
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
85 86
};

87
template <typename DeviceContext, typename T>
88 89 90 91 92 93 94
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
95 96
  int axis = ctx.Attr<int>("axis");

97 98 99 100
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
101 102
}

103
template <typename DeviceContext, typename T>
104 105 106
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
107 108 109 110 111
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
112 113 114 115 116 117 118 119 120 121 122 123
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

124
template <typename DeviceContext, typename T>
125
typename std::enable_if<
126 127
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
128 129 130 131 132 133
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
134 135
}

136 137 138
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__

139 140 141 142 143 144 145 146 147 148 149 150 151 152
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T *pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}
153 154 155 156 157 158 159 160
template <typename T, int BLOCK_W, int BLOCK_H>
__global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
                                size_t width, size_t height) {
  __shared__ T sdata[BLOCK_H][BLOCK_W + 1];
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t width_stride = gridDim.x * blockDim.x;
  size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
                      ((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
W
wangchaochaohu 已提交
161 162
  size_t full_height = (height & (~((uint64_t)(BLOCK_H - 1)))) +
                       ((height & (BLOCK_H - 1)) ? BLOCK_H : 0);
163 164 165 166 167 168 169

#pragma unroll
  for (size_t w = idx; w < full_width; w += width_stride) {
    sdata[threadIdx.y][threadIdx.x] = 0;
    __syncthreads();
    size_t offset = w + threadIdx.y * width;
#pragma unroll
W
wangchaochaohu 已提交
170
    for (size_t h = threadIdx.y; h < full_height;
171 172
         h += BLOCK_H) {  // block-stride loop across matrix height
      sdata[threadIdx.y][threadIdx.x] +=
W
wangchaochaohu 已提交
173
          (w < width && h < height) ? in[offset] : (static_cast<T>(0));
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
      offset += width * BLOCK_H;
    }
    __syncthreads();

    T val = sdata[threadIdx.x][threadIdx.y];
    for (int i = warpSize >> 1; i > 0; i >>= 1)
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);

    __syncthreads();
    if (threadIdx.x == 0) sdata[0][threadIdx.y] = val;
    __syncthreads();
    if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
  }
}

189
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
190 191 192 193
template <int SIZE>
__global__ void VecFP16MatrixColReduce(const __half2 *__restrict__ in,
                                       __half2 *__restrict__ out, size_t width,
                                       size_t height) {
194
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
195 196 197 198 199 200 201 202 203 204 205 206 207
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int by = blockIdx.y;
  __half2 zero = __half2half2(static_cast<__half>(0));
  const int cols = width / 2;
  for (; idx < cols; idx += blockDim.x * gridDim.x) {
    __half2 sum = zero;
    for (int row = 0; row < SIZE; row++) {
      int index = idx + (row + by * SIZE) * cols;
      sum = __hadd2(sum, in[index]);
    }

    atomicAdd(&(out[idx]), sum);
  }
208
#endif
209
}
210
#endif
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
template <typename T>
__global__ void MatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                      size_t width, size_t height) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;

  for (; idx < width; idx += blockDim.x * gridDim.x) {
    T sum = static_cast<T>(0);
    for (int row = 0; row < height; row++) {
      sum += in[idx + row * width];
    }

    out[idx] = sum;
  }
}

template <typename T, int VEC_SIZE>
__global__ void VecMatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                         size_t width, size_t height) {
  using LoadT = AlignedVector<T, VEC_SIZE>;
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int w = idx * VEC_SIZE;
  int width_stride = blockDim.x * gridDim.x * VEC_SIZE;
234
  for (; w < width; w += width_stride) {
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    T zero = static_cast<T>(0);
    T sum[VEC_SIZE] = {zero};
    T tmp_vec[VEC_SIZE] = {zero};
    LoadT *tmp_ptr = reinterpret_cast<LoadT *>(&tmp_vec);
    for (int row = 0; row < height; row++) {
      int offset = width * row + w;
      *tmp_ptr = *reinterpret_cast<const LoadT *>(&in[offset]);
      for (int v = 0; v < VEC_SIZE; v++) {
        sum[v] += tmp_vec[v];
      }
    }

    for (int v = 0; v < VEC_SIZE; v++) out[w + v] = sum[v];
  }
}
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
#endif
#endif
bool static RunSpecialDims(const framework::DDim &dx_dims,
                           const framework::DDim &dy_dims,
                           const framework::DDim &dout_dims, int axis) {
  auto smaller_dims = dx_dims;
  auto bigger_dims = dy_dims;
  auto smaller_dims_size = smaller_dims.size();
  auto bigger_dims_size = bigger_dims.size();
  int smaller_ignore_size = 0;
  int bigger_ignore_size = 0;
  for (int i = 0; i < smaller_dims_size; i++) {
    if (smaller_dims[i] == 1)
      smaller_ignore_size++;
    else
      break;
  }
  for (int i = 0; i < bigger_dims_size; i++) {
    if (bigger_dims[i] == 1)
      bigger_ignore_size++;
    else
      break;
  }

  int smaller_real_size = smaller_dims.size() - smaller_ignore_size;
  int bigger_real_size = bigger_dims.size() - bigger_ignore_size;

  if (smaller_real_size == bigger_real_size) return false;

  if (bigger_real_size < smaller_real_size) {
    smaller_dims = dy_dims;
    bigger_dims = dx_dims;
    std::swap(smaller_real_size, bigger_real_size);
  }
  int big_size = bigger_dims.size();
  int small_size = smaller_dims.size();
  for (int i = 1; i <= smaller_real_size; i++) {
    if (bigger_dims[big_size - i] != smaller_dims[small_size - i]) return false;
  }

  if (axis != -1 && (axis != (bigger_real_size - smaller_real_size))) {
    return false;
  }

  return true;
}

297
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
298 299 300 301
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
302 303 304 305 306
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy);
307 308
#endif

Q
QI JUN 已提交
309
template <typename DeviceContext, typename T>
310
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
311
 public:
C
chengduo 已提交
312
  void Compute(const framework::ExecutionContext &ctx) const override {
313 314
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
315 316
    using Tensor = framework::Tensor;

317 318
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
319 320 321
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
322
    // skip out
C
chengduo 已提交
323
    auto *out = dout;
324

325 326
// TODO(@wangchaochaohu, zhouwei35): Fix conv_transpose2d API(dataformat NHWC)
// error in Windows
327
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
#ifdef __NVCC__

    int axis = ctx.Attr<int>("axis");
    if (ctx.GetPlace() == platform::CUDAPlace() && dx != nullptr &&
        dy != nullptr && dout != nullptr && dx->numel() != dy->numel() &&
        RunSpecialDims(dx->dims(), dy->dims(), dout->dims(), axis)) {
      auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
      auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
      auto *dout_data = dout->data<T>();
      auto stream = ctx.cuda_device_context().stream();
      auto *out_data = dx_data;
      int width = dx->numel();
      int height = dout->numel() / width;
      if (dx->dims() == dout->dims()) {
        width = dy->numel();
        height = dout->numel() / width;
        out_data = dy_data;
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      } else {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      }
353 354 355 356 357 358 359 360 361 362 363 364 365 366
      // special optimization using cub
      if (width == 1) {
        int nums = height;
        size_t temp_storage_bytes = 0;
        auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes,
                                          dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
        framework::Tensor tmp;
        auto *temp_storage = tmp.mutable_data<uint8_t>(
            framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
            ctx.GetPlace());
        err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes,
                                     dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
W
wangchaochaohu 已提交
367
        return;
368
      }
369 370 371 372 373 374 375 376 377 378

      constexpr int block_x = 32;
      constexpr int block_y = 32;
      dim3 blocks(block_x, block_y);

      int max_physical_threads =
          ctx.cuda_device_context().GetMaxPhysicalThreadCount();
      int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
      int theory_block = (width + blocks.x - 1) / blocks.x;
      dim3 grids(std::min(theory_block, max_blocks));
379
#if CUDA_VERSION >= 10000
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
      if (std::is_same<T, paddle::platform::float16>::value && width < 2048 &&
          width % 2 == 0 && height % 64 == 0) {
        auto &dev_ctx =
            ctx.template device_context<platform::CUDADeviceContext>();
        math::SetConstant<platform::CUDADeviceContext, T> functor;
        if (dout->dims() == dx->dims())
          functor(dev_ctx, dy, static_cast<T>(0));
        else
          functor(dev_ctx, dx, static_cast<T>(0));
        const __half2 *ptr1 = reinterpret_cast<const __half2 *>(dout_data);
        __half2 *ptr2 = reinterpret_cast<__half2 *>(out_data);
        const int threads = 128;
        dim3 grid(1, (height + 64 - 1) / 64);
        VecFP16MatrixColReduce<64><<<grid, threads, 0, stream>>>(ptr1, ptr2,
                                                                 width, height);
        return;
      }
397
#endif
398 399 400 401 402 403 404

      if (width / height < 32) {
        MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
            dout_data, out_data, width, height);
      } else {
        size_t thread_nums = 1024;
        size_t block_nums = (width + thread_nums - 1) / thread_nums;
405
        int vec_size = VectorizedSize<T>(dout_data);
406 407 408 409 410 411 412 413 414 415
        if (vec_size == 4 && width % 4 == 0) {
          block_nums = (width / vec_size + thread_nums - 1) / thread_nums;
          VecMatrixReduceLongWidth<T,
                                   4><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        } else {
          MatrixReduceLongWidth<T><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        }
      }
416 417 418 419 420
      return;
    }

#endif
#endif
421 422 423 424 425 426 427 428 429 430 431 432 433 434
    // Special case when dy is not needed and dx doesn't reduce
    if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
      VLOG(4) << "Special case when dy is not needed and dx doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    } else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
      VLOG(4) << "Special case when dx is not needed and dy doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    } else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
435
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
436
    } else {
437 438
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
439
    }
G
gongweibao 已提交
440 441 442
  }
};

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
463 464
      LaunchBroadcastElementwiseCpuKernel<DeviceContext, T>(ctx, &ddx_safe,
                                                            &ddy_safe, ddout);
465 466 467 468
    }
  }
};

G
gongweibao 已提交
469 470
}  // namespace operators
}  // namespace paddle