elementwise_add_op.h 16.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
fengjiayi 已提交
14 15
#pragma once

16 17
#include <algorithm>
#include <utility>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
20
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
21
#include "paddle/fluid/operators/math/blas.h"
22
#include "paddle/fluid/operators/math/math_function.h"
23 24
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__
25 26
#include <cuda.h>
#include <cuda_fp16.h>
27 28 29
#include "cub/cub.cuh"
#endif
#endif
W
wanghuancoder 已提交
30

G
gongweibao 已提交
31 32 33
namespace paddle {
namespace operators {

34
template <typename DeviceContext, typename T>
35 36 37
void default_elementwise_add(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z) {
38
  int axis = ctx.Attr<int>("axis");
39 40 41
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
42 43 44 45 46 47
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
48 49
}

50 51 52 53 54 55
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
56

Q
QI JUN 已提交
57
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
58
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
59
 public:
C
chengduo 已提交
60 61 62 63
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
64
    z->mutable_data<T>(ctx.GetPlace());
65
    auto dims_equal = x->dims() == y->dims();
66
    if (dims_equal) {
67 68
      SameDimsElemwiseAdd<DeviceContext, T> same_dims_add;
      same_dims_add(ctx, x, y, z);
69
    } else {
70
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
71
    }
G
gongweibao 已提交
72 73 74 75
  }
};

template <typename T>
Y
Yu Yang 已提交
76 77
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
78 79
};

80
template <typename DeviceContext, typename T>
81 82 83 84 85 86 87
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
88 89
  int axis = ctx.Attr<int>("axis");

90 91 92 93
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
94 95
}

96
template <typename DeviceContext, typename T>
97 98 99
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
100 101 102 103 104
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
105 106 107 108 109 110 111 112 113 114 115 116
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

117
template <typename DeviceContext, typename T>
118
typename std::enable_if<
119 120
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
121 122 123 124 125 126
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
127 128
}

129 130 131
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__

132 133 134 135 136 137 138 139 140 141 142 143 144 145
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T *pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}
146 147 148 149 150 151 152 153
template <typename T, int BLOCK_W, int BLOCK_H>
__global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
                                size_t width, size_t height) {
  __shared__ T sdata[BLOCK_H][BLOCK_W + 1];
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t width_stride = gridDim.x * blockDim.x;
  size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
                      ((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
W
wangchaochaohu 已提交
154 155
  size_t full_height = (height & (~((uint64_t)(BLOCK_H - 1)))) +
                       ((height & (BLOCK_H - 1)) ? BLOCK_H : 0);
156 157 158 159 160 161 162

#pragma unroll
  for (size_t w = idx; w < full_width; w += width_stride) {
    sdata[threadIdx.y][threadIdx.x] = 0;
    __syncthreads();
    size_t offset = w + threadIdx.y * width;
#pragma unroll
W
wangchaochaohu 已提交
163
    for (size_t h = threadIdx.y; h < full_height;
164 165
         h += BLOCK_H) {  // block-stride loop across matrix height
      sdata[threadIdx.y][threadIdx.x] +=
W
wangchaochaohu 已提交
166
          (w < width && h < height) ? in[offset] : (static_cast<T>(0));
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
      offset += width * BLOCK_H;
    }
    __syncthreads();

    T val = sdata[threadIdx.x][threadIdx.y];
    for (int i = warpSize >> 1; i > 0; i >>= 1)
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);

    __syncthreads();
    if (threadIdx.x == 0) sdata[0][threadIdx.y] = val;
    __syncthreads();
    if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
  }
}

182 183 184 185
template <int SIZE>
__global__ void VecFP16MatrixColReduce(const __half2 *__restrict__ in,
                                       __half2 *__restrict__ out, size_t width,
                                       size_t height) {
186
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
187 188 189 190 191 192 193 194 195 196 197 198 199
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int by = blockIdx.y;
  __half2 zero = __half2half2(static_cast<__half>(0));
  const int cols = width / 2;
  for (; idx < cols; idx += blockDim.x * gridDim.x) {
    __half2 sum = zero;
    for (int row = 0; row < SIZE; row++) {
      int index = idx + (row + by * SIZE) * cols;
      sum = __hadd2(sum, in[index]);
    }

    atomicAdd(&(out[idx]), sum);
  }
200
#endif
201 202
}

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
template <typename T>
__global__ void MatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                      size_t width, size_t height) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;

  for (; idx < width; idx += blockDim.x * gridDim.x) {
    T sum = static_cast<T>(0);
    for (int row = 0; row < height; row++) {
      sum += in[idx + row * width];
    }

    out[idx] = sum;
  }
}

template <typename T, int VEC_SIZE>
__global__ void VecMatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                         size_t width, size_t height) {
  using LoadT = AlignedVector<T, VEC_SIZE>;
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int w = idx * VEC_SIZE;
  int width_stride = blockDim.x * gridDim.x * VEC_SIZE;
225
  for (; w < width; w += width_stride) {
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
    T zero = static_cast<T>(0);
    T sum[VEC_SIZE] = {zero};
    T tmp_vec[VEC_SIZE] = {zero};
    LoadT *tmp_ptr = reinterpret_cast<LoadT *>(&tmp_vec);
    for (int row = 0; row < height; row++) {
      int offset = width * row + w;
      *tmp_ptr = *reinterpret_cast<const LoadT *>(&in[offset]);
      for (int v = 0; v < VEC_SIZE; v++) {
        sum[v] += tmp_vec[v];
      }
    }

    for (int v = 0; v < VEC_SIZE; v++) out[w + v] = sum[v];
  }
}
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
#endif
#endif
bool static RunSpecialDims(const framework::DDim &dx_dims,
                           const framework::DDim &dy_dims,
                           const framework::DDim &dout_dims, int axis) {
  auto smaller_dims = dx_dims;
  auto bigger_dims = dy_dims;
  auto smaller_dims_size = smaller_dims.size();
  auto bigger_dims_size = bigger_dims.size();
  int smaller_ignore_size = 0;
  int bigger_ignore_size = 0;
  for (int i = 0; i < smaller_dims_size; i++) {
    if (smaller_dims[i] == 1)
      smaller_ignore_size++;
    else
      break;
  }
  for (int i = 0; i < bigger_dims_size; i++) {
    if (bigger_dims[i] == 1)
      bigger_ignore_size++;
    else
      break;
  }

  int smaller_real_size = smaller_dims.size() - smaller_ignore_size;
  int bigger_real_size = bigger_dims.size() - bigger_ignore_size;

  if (smaller_real_size == bigger_real_size) return false;

  if (bigger_real_size < smaller_real_size) {
    smaller_dims = dy_dims;
    bigger_dims = dx_dims;
    std::swap(smaller_real_size, bigger_real_size);
  }
  int big_size = bigger_dims.size();
  int small_size = smaller_dims.size();
  for (int i = 1; i <= smaller_real_size; i++) {
    if (bigger_dims[big_size - i] != smaller_dims[small_size - i]) return false;
  }

  if (axis != -1 && (axis != (bigger_real_size - smaller_real_size))) {
    return false;
  }

  return true;
}

288 289 290 291 292
#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
293 294 295 296 297
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy);
298 299
#endif

Q
QI JUN 已提交
300
template <typename DeviceContext, typename T>
301
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
302
 public:
C
chengduo 已提交
303
  void Compute(const framework::ExecutionContext &ctx) const override {
304 305
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
306 307
    using Tensor = framework::Tensor;

308 309
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
310 311 312
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
313
    // skip out
C
chengduo 已提交
314
    auto *out = dout;
315

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__

    int axis = ctx.Attr<int>("axis");
    if (ctx.GetPlace() == platform::CUDAPlace() && dx != nullptr &&
        dy != nullptr && dout != nullptr && dx->numel() != dy->numel() &&
        RunSpecialDims(dx->dims(), dy->dims(), dout->dims(), axis)) {
      auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
      auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
      auto *dout_data = dout->data<T>();
      auto stream = ctx.cuda_device_context().stream();
      auto *out_data = dx_data;
      int width = dx->numel();
      int height = dout->numel() / width;
      if (dx->dims() == dout->dims()) {
        width = dy->numel();
        height = dout->numel() / width;
        out_data = dy_data;
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      } else {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      }
342 343 344 345 346 347 348 349 350 351 352 353 354 355
      // special optimization using cub
      if (width == 1) {
        int nums = height;
        size_t temp_storage_bytes = 0;
        auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes,
                                          dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
        framework::Tensor tmp;
        auto *temp_storage = tmp.mutable_data<uint8_t>(
            framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
            ctx.GetPlace());
        err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes,
                                     dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
W
wangchaochaohu 已提交
356
        return;
357
      }
358 359 360 361 362 363 364 365 366 367

      constexpr int block_x = 32;
      constexpr int block_y = 32;
      dim3 blocks(block_x, block_y);

      int max_physical_threads =
          ctx.cuda_device_context().GetMaxPhysicalThreadCount();
      int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
      int theory_block = (width + blocks.x - 1) / blocks.x;
      dim3 grids(std::min(theory_block, max_blocks));
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
      if (std::is_same<T, paddle::platform::float16>::value && width < 2048 &&
          width % 2 == 0 && height % 64 == 0) {
        auto &dev_ctx =
            ctx.template device_context<platform::CUDADeviceContext>();
        math::SetConstant<platform::CUDADeviceContext, T> functor;
        if (dout->dims() == dx->dims())
          functor(dev_ctx, dy, static_cast<T>(0));
        else
          functor(dev_ctx, dx, static_cast<T>(0));
        const __half2 *ptr1 = reinterpret_cast<const __half2 *>(dout_data);
        __half2 *ptr2 = reinterpret_cast<__half2 *>(out_data);
        const int threads = 128;
        dim3 grid(1, (height + 64 - 1) / 64);
        VecFP16MatrixColReduce<64><<<grid, threads, 0, stream>>>(ptr1, ptr2,
                                                                 width, height);
        return;
      }
385 386 387 388 389 390 391

      if (width / height < 32) {
        MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
            dout_data, out_data, width, height);
      } else {
        size_t thread_nums = 1024;
        size_t block_nums = (width + thread_nums - 1) / thread_nums;
392
        int vec_size = VectorizedSize<T>(dout_data);
393 394 395 396 397 398 399 400 401 402
        if (vec_size == 4 && width % 4 == 0) {
          block_nums = (width / vec_size + thread_nums - 1) / thread_nums;
          VecMatrixReduceLongWidth<T,
                                   4><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        } else {
          MatrixReduceLongWidth<T><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        }
      }
403 404 405 406 407
      return;
    }

#endif
#endif
408 409 410 411 412 413 414 415 416 417 418 419 420 421
    // Special case when dy is not needed and dx doesn't reduce
    if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
      VLOG(4) << "Special case when dy is not needed and dx doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    } else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
      VLOG(4) << "Special case when dx is not needed and dy doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    } else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
422
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
423
    } else {
424 425
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
426
    }
G
gongweibao 已提交
427 428 429
  }
};

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
450 451
      default_elementwise_add<DeviceContext, T>(ctx, &ddx_safe, &ddy_safe,
                                                ddout);
452 453 454 455
    }
  }
};

G
gongweibao 已提交
456 457
}  // namespace operators
}  // namespace paddle