未验证 提交 ac4bae8e 编写于 作者: W wangchaochaohu 提交者: GitHub

elementwise_add_grad Op optimization (#29575)

上级 62d44836
......@@ -13,6 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <utility>
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
......@@ -116,6 +118,135 @@ elementwise_add_grad(const framework::ExecutionContext &ctx,
default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
}
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__
template <typename T, int BLOCK_W, int BLOCK_H>
__global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
size_t width, size_t height) {
__shared__ T sdata[BLOCK_H][BLOCK_W + 1];
size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
size_t width_stride = gridDim.x * blockDim.x;
size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
#pragma unroll
for (size_t w = idx; w < full_width; w += width_stride) {
sdata[threadIdx.y][threadIdx.x] = 0;
__syncthreads();
size_t offset = w + threadIdx.y * width;
#pragma unroll
for (size_t h = threadIdx.y; h < height;
h += BLOCK_H) { // block-stride loop across matrix height
sdata[threadIdx.y][threadIdx.x] +=
(w < width) ? in[offset] : (static_cast<T>(0));
offset += width * BLOCK_H;
}
__syncthreads();
T val = sdata[threadIdx.x][threadIdx.y];
for (int i = warpSize >> 1; i > 0; i >>= 1)
val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
__syncthreads();
if (threadIdx.x == 0) sdata[0][threadIdx.y] = val;
__syncthreads();
if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
}
}
template <int BLOCK_W, int BLOCK_H>
__global__ void FP16MatrixColReduce(
const paddle::platform::float16 *__restrict__ in,
paddle::platform::float16 *__restrict__ out, size_t width, size_t height) {
constexpr int repeats = BLOCK_H / BLOCK_W;
__shared__ paddle::platform::float16 sdata[BLOCK_H][BLOCK_W + 1];
size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
size_t width_stride = gridDim.x * blockDim.x;
size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
#pragma unroll
for (size_t w = idx; w < full_width; w += width_stride) {
for (int r = 0; r < repeats; r++) {
sdata[threadIdx.y + r * BLOCK_W][threadIdx.x] = 0;
}
__syncthreads();
for (int r = 0; r < repeats; r++) {
size_t offset = w + (r * BLOCK_W + threadIdx.y) * width;
#pragma unroll
for (size_t h = r * BLOCK_H + threadIdx.y; h < height;
h += BLOCK_H) { // block-stride loop across matrix height
sdata[r * BLOCK_W + threadIdx.y][threadIdx.x] +=
(w < width) ? in[offset + r * BLOCK_W * width]
: (static_cast<paddle::platform::float16>(0));
offset += width * BLOCK_H;
}
}
__syncthreads();
paddle::platform::float16 result =
static_cast<paddle::platform::float16>(0);
for (int r = 0; r < repeats; r++) {
paddle::platform::float16 val =
sdata[threadIdx.x + r * BLOCK_W][threadIdx.y];
for (int i = warpSize >> 1; i > 0; i >>= 1)
val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);
__syncthreads();
result += val;
}
if (threadIdx.x == 0) sdata[0][threadIdx.y] = result;
__syncthreads();
if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
}
}
#endif
#endif
bool static RunSpecialDims(const framework::DDim &dx_dims,
const framework::DDim &dy_dims,
const framework::DDim &dout_dims, int axis) {
auto smaller_dims = dx_dims;
auto bigger_dims = dy_dims;
auto smaller_dims_size = smaller_dims.size();
auto bigger_dims_size = bigger_dims.size();
int smaller_ignore_size = 0;
int bigger_ignore_size = 0;
for (int i = 0; i < smaller_dims_size; i++) {
if (smaller_dims[i] == 1)
smaller_ignore_size++;
else
break;
}
for (int i = 0; i < bigger_dims_size; i++) {
if (bigger_dims[i] == 1)
bigger_ignore_size++;
else
break;
}
int smaller_real_size = smaller_dims.size() - smaller_ignore_size;
int bigger_real_size = bigger_dims.size() - bigger_ignore_size;
if (smaller_real_size == bigger_real_size) return false;
if (bigger_real_size < smaller_real_size) {
smaller_dims = dy_dims;
bigger_dims = dx_dims;
std::swap(smaller_real_size, bigger_real_size);
}
int big_size = bigger_dims.size();
int small_size = smaller_dims.size();
for (int i = 1; i <= smaller_real_size; i++) {
if (bigger_dims[big_size - i] != smaller_dims[small_size - i]) return false;
}
if (axis != -1 && (axis != (bigger_real_size - smaller_real_size))) {
return false;
}
return true;
}
#ifdef PADDLE_WITH_CUDA
// cuda definition
template <typename DeviceContext, typename T>
......@@ -144,6 +275,63 @@ class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
// skip out
auto *out = dout;
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__
int axis = ctx.Attr<int>("axis");
if (ctx.GetPlace() == platform::CUDAPlace() && dx != nullptr &&
dy != nullptr && dout != nullptr && dx->numel() != dy->numel() &&
RunSpecialDims(dx->dims(), dy->dims(), dout->dims(), axis)) {
auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
auto *dout_data = dout->data<T>();
auto stream = ctx.cuda_device_context().stream();
auto *out_data = dx_data;
int width = dx->numel();
int height = dout->numel() / width;
if (dx->dims() == dout->dims()) {
width = dy->numel();
height = dout->numel() / width;
out_data = dy_data;
framework::TensorCopy(
*dout, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dx);
} else {
framework::TensorCopy(
*dout, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dy);
}
constexpr int block_x = 32;
constexpr int block_y = 32;
dim3 blocks(block_x, block_y);
int max_physical_threads =
ctx.cuda_device_context().GetMaxPhysicalThreadCount();
int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
int theory_block = (width + blocks.x - 1) / blocks.x;
dim3 grids(std::min(theory_block, max_blocks));
if (std::is_same<T, paddle::platform::float16>::value) {
const paddle::platform::float16 *ptr1 =
reinterpret_cast<const paddle::platform::float16 *>(dout_data);
paddle::platform::float16 *ptr2 =
reinterpret_cast<paddle::platform::float16 *>(out_data);
if (height <= 32) {
FP16MatrixColReduce<32, 32><<<grids, blocks, 0, stream>>>(
ptr1, ptr2, width, height);
} else {
FP16MatrixColReduce<32, 64><<<grids, blocks, 0, stream>>>(
ptr1, ptr2, width, height);
}
return;
}
MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
dout_data, out_data, width, height);
return;
}
#endif
#endif
// Special case when dy is not needed and dx doesn't reduce
if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
VLOG(4) << "Special case when dy is not needed and dx doesn't "
......
......@@ -351,6 +351,16 @@ class TestElementwiseAddOp_commonuse_add1(TestElementwiseAddOp):
self.axis = -1
class TestElementwiseFP16AddOp_commonuse_add1(TestFP16ElementwiseAddOp):
def init_input_output(self):
self.x = np.random.rand(20, 30, 100).astype(self.dtype)
self.y = np.random.rand(1, 1, 100).astype(self.dtype)
self.out = self.x + self.y
def init_axis(self):
self.axis = -1
class TestElementwiseAddOp_commonuse_add2(TestElementwiseAddOp):
def init_input_output(self):
self.x = np.random.rand(10, 3, 1, 4).astype(self.dtype)
......@@ -429,4 +439,5 @@ class TestAddOp(unittest.TestCase):
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册