elementwise_add_op.h 17.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
F
fengjiayi 已提交
14 15
#pragma once

16 17
#include <algorithm>
#include <utility>
W
Wu Yi 已提交
18
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
19
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
20
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
21
#include "paddle/fluid/operators/math/blas.h"
22
#include "paddle/fluid/operators/math/math_function.h"
23
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
24
#ifdef __NVCC__
25 26
#include <cuda.h>
#include <cuda_fp16.h>
27 28
#include "cub/cub.cuh"
#endif
29 30 31 32 33 34
#ifdef __HIPCC__
#include <hip/hip_fp16.h>
#include <hip/hip_runtime.h>
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
35
#endif
W
wanghuancoder 已提交
36

G
gongweibao 已提交
37 38 39
namespace paddle {
namespace operators {

40
template <typename DeviceContext, typename T>
41 42 43
void default_elementwise_add(const framework::ExecutionContext &ctx,
                             const framework::Tensor *x,
                             const framework::Tensor *y, framework::Tensor *z) {
44
  int axis = ctx.Attr<int>("axis");
45 46 47
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
48 49 50 51 52 53
    ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          AddFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseAddFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseAddFunctor<T>(), z);
  }
54 55
}

56 57 58 59 60 61
template <typename DeviceContext, typename T, class Enable = void>
struct SameDimsElemwiseAdd {
  void operator()(const framework::ExecutionContext &ctx,
                  const framework::Tensor *x, const framework::Tensor *y,
                  framework::Tensor *z);
};
62

Q
QI JUN 已提交
63
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
64
class ElementwiseAddKernel : public framework::OpKernel<T> {
G
gongweibao 已提交
65
 public:
C
chengduo 已提交
66 67 68 69
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");
C
chengduoZH 已提交
70
    z->mutable_data<T>(ctx.GetPlace());
71
    auto dims_equal = x->dims() == y->dims();
72
    if (dims_equal) {
73 74
      SameDimsElemwiseAdd<DeviceContext, T> same_dims_add;
      same_dims_add(ctx, x, y, z);
75
    } else {
76
      default_elementwise_add<DeviceContext, T>(ctx, x, y, z);
77
    }
G
gongweibao 已提交
78 79 80 81
  }
};

template <typename T>
Y
Yu Yang 已提交
82 83
struct IdentityGrad {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
G
gongweibao 已提交
84 85
};

86
template <typename DeviceContext, typename T>
87 88 89 90 91 92 93
void default_elementwise_add_grad(const framework::ExecutionContext &ctx,
                                  const framework::Tensor *x,
                                  const framework::Tensor *y,
                                  const framework::Tensor *out,
                                  const framework::Tensor *dout,
                                  framework::Tensor *dx,
                                  framework::Tensor *dy) {
94 95
  int axis = ctx.Attr<int>("axis");

96 97 98 99
  ElemwiseExplicitGradCompute<DeviceContext, T, IdentityGrad<T>,
                              IdentityGrad<T>>(ctx, *x, *y, *out, *dout, axis,
                                               dx, dy, IdentityGrad<T>(),
                                               IdentityGrad<T>());
100 101
}

102
template <typename DeviceContext, typename T>
103 104 105
typename std::enable_if<
    std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
106 107 108 109 110
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
111 112 113 114 115 116 117 118 119 120 121 122
  auto blas = math::GetBlas<DeviceContext, T>(ctx);
  if (dx) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dx->mutable_data<T>(ctx.GetPlace()));
  }

  if (dy) {
    blas.VCOPY(dout->numel(), dout->data<T>(),
               dy->mutable_data<T>(ctx.GetPlace()));
  }
}

123
template <typename DeviceContext, typename T>
124
typename std::enable_if<
125 126
    !std::is_floating_point<T>::value &&
    std::is_same<DeviceContext, platform::CPUDeviceContext>::value>::type
127 128 129 130 131 132
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy) {
  default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
133 134
}

135 136 137
#ifdef PADDLE_WITH_CUDA
#ifdef __NVCC__

138 139 140 141 142 143 144 145 146 147 148 149 150 151
template <typename T, int Size>
struct alignas(sizeof(T) * Size) AlignedVector {
  T val[Size];
};

template <typename T>
inline int VectorizedSize(const T *pointer) {
  uint64_t address = reinterpret_cast<uint64_t>(pointer);
  constexpr int vec4 = std::alignment_of<AlignedVector<T, 4>>::value;  // NOLINT
  if (address % vec4 == 0) {
    return 4;
  }
  return 1;
}
152 153 154 155 156 157 158 159
template <typename T, int BLOCK_W, int BLOCK_H>
__global__ void MatrixColReduce(const T *__restrict__ in, T *__restrict__ out,
                                size_t width, size_t height) {
  __shared__ T sdata[BLOCK_H][BLOCK_W + 1];
  size_t idx = threadIdx.x + blockDim.x * blockIdx.x;
  size_t width_stride = gridDim.x * blockDim.x;
  size_t full_width = (width & (~((uint64_t)(BLOCK_W - 1)))) +
                      ((width & (BLOCK_W - 1)) ? BLOCK_W : 0);
W
wangchaochaohu 已提交
160 161
  size_t full_height = (height & (~((uint64_t)(BLOCK_H - 1)))) +
                       ((height & (BLOCK_H - 1)) ? BLOCK_H : 0);
162 163 164 165 166 167 168

#pragma unroll
  for (size_t w = idx; w < full_width; w += width_stride) {
    sdata[threadIdx.y][threadIdx.x] = 0;
    __syncthreads();
    size_t offset = w + threadIdx.y * width;
#pragma unroll
W
wangchaochaohu 已提交
169
    for (size_t h = threadIdx.y; h < full_height;
170 171
         h += BLOCK_H) {  // block-stride loop across matrix height
      sdata[threadIdx.y][threadIdx.x] +=
W
wangchaochaohu 已提交
172
          (w < width && h < height) ? in[offset] : (static_cast<T>(0));
173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
      offset += width * BLOCK_H;
    }
    __syncthreads();

    T val = sdata[threadIdx.x][threadIdx.y];
    for (int i = warpSize >> 1; i > 0; i >>= 1)
      val += platform::CudaShuffleXorSync(0xFFFFFFFF, val, i);

    __syncthreads();
    if (threadIdx.x == 0) sdata[0][threadIdx.y] = val;
    __syncthreads();
    if ((threadIdx.y == 0) && ((w) < width)) out[w] = sdata[0][threadIdx.x];
  }
}

188
#if defined(PADDLE_WITH_CUDA) && CUDA_VERSION >= 10000
189 190 191 192
template <int SIZE>
__global__ void VecFP16MatrixColReduce(const __half2 *__restrict__ in,
                                       __half2 *__restrict__ out, size_t width,
                                       size_t height) {
193
#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
194 195 196 197 198 199 200 201 202 203 204 205 206
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int by = blockIdx.y;
  __half2 zero = __half2half2(static_cast<__half>(0));
  const int cols = width / 2;
  for (; idx < cols; idx += blockDim.x * gridDim.x) {
    __half2 sum = zero;
    for (int row = 0; row < SIZE; row++) {
      int index = idx + (row + by * SIZE) * cols;
      sum = __hadd2(sum, in[index]);
    }

    atomicAdd(&(out[idx]), sum);
  }
207
#endif
208
}
209
#endif
210

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
template <typename T>
__global__ void MatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                      size_t width, size_t height) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;

  for (; idx < width; idx += blockDim.x * gridDim.x) {
    T sum = static_cast<T>(0);
    for (int row = 0; row < height; row++) {
      sum += in[idx + row * width];
    }

    out[idx] = sum;
  }
}

template <typename T, int VEC_SIZE>
__global__ void VecMatrixReduceLongWidth(const T *__restrict__ in, T *out,
                                         size_t width, size_t height) {
  using LoadT = AlignedVector<T, VEC_SIZE>;
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  int w = idx * VEC_SIZE;
  int width_stride = blockDim.x * gridDim.x * VEC_SIZE;
233
  for (; w < width; w += width_stride) {
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    T zero = static_cast<T>(0);
    T sum[VEC_SIZE] = {zero};
    T tmp_vec[VEC_SIZE] = {zero};
    LoadT *tmp_ptr = reinterpret_cast<LoadT *>(&tmp_vec);
    for (int row = 0; row < height; row++) {
      int offset = width * row + w;
      *tmp_ptr = *reinterpret_cast<const LoadT *>(&in[offset]);
      for (int v = 0; v < VEC_SIZE; v++) {
        sum[v] += tmp_vec[v];
      }
    }

    for (int v = 0; v < VEC_SIZE; v++) out[w + v] = sum[v];
  }
}
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
#endif
#endif
bool static RunSpecialDims(const framework::DDim &dx_dims,
                           const framework::DDim &dy_dims,
                           const framework::DDim &dout_dims, int axis) {
  auto smaller_dims = dx_dims;
  auto bigger_dims = dy_dims;
  auto smaller_dims_size = smaller_dims.size();
  auto bigger_dims_size = bigger_dims.size();
  int smaller_ignore_size = 0;
  int bigger_ignore_size = 0;
  for (int i = 0; i < smaller_dims_size; i++) {
    if (smaller_dims[i] == 1)
      smaller_ignore_size++;
    else
      break;
  }
  for (int i = 0; i < bigger_dims_size; i++) {
    if (bigger_dims[i] == 1)
      bigger_ignore_size++;
    else
      break;
  }

  int smaller_real_size = smaller_dims.size() - smaller_ignore_size;
  int bigger_real_size = bigger_dims.size() - bigger_ignore_size;

  if (smaller_real_size == bigger_real_size) return false;

  if (bigger_real_size < smaller_real_size) {
    smaller_dims = dy_dims;
    bigger_dims = dx_dims;
    std::swap(smaller_real_size, bigger_real_size);
  }
  int big_size = bigger_dims.size();
  int small_size = smaller_dims.size();
  for (int i = 1; i <= smaller_real_size; i++) {
    if (bigger_dims[big_size - i] != smaller_dims[small_size - i]) return false;
  }

  if (axis != -1 && (axis != (bigger_real_size - smaller_real_size))) {
    return false;
  }

  return true;
}

296
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
297 298 299 300
// cuda definition
template <typename DeviceContext, typename T>
typename std::enable_if<
    std::is_same<DeviceContext, platform::CUDADeviceContext>::value>::type
301 302 303 304 305
elementwise_add_grad(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     const framework::Tensor *out,
                     const framework::Tensor *dout, framework::Tensor *dx,
                     framework::Tensor *dy);
306 307
#endif

Q
QI JUN 已提交
308
template <typename DeviceContext, typename T>
309
class ElementwiseAddGradKernel : public ElemwiseGradKernel<T> {
G
gongweibao 已提交
310
 public:
C
chengduo 已提交
311
  void Compute(const framework::ExecutionContext &ctx) const override {
312 313
    ElemwiseGradKernel<T>::Compute(ctx);

C
chengduoZH 已提交
314 315
    using Tensor = framework::Tensor;

316 317
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
C
chengduo 已提交
318 319 320
    auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
321
    // skip out
C
chengduo 已提交
322
    auto *out = dout;
323

324 325
// TODO(@wangchaochaohu, zhouwei35): Fix conv_transpose2d API(dataformat NHWC)
// error in Windows
326
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
#ifdef __NVCC__

    int axis = ctx.Attr<int>("axis");
    if (ctx.GetPlace() == platform::CUDAPlace() && dx != nullptr &&
        dy != nullptr && dout != nullptr && dx->numel() != dy->numel() &&
        RunSpecialDims(dx->dims(), dy->dims(), dout->dims(), axis)) {
      auto *dx_data = dx->mutable_data<T>(ctx.GetPlace());
      auto *dy_data = dy->mutable_data<T>(ctx.GetPlace());
      auto *dout_data = dout->data<T>();
      auto stream = ctx.cuda_device_context().stream();
      auto *out_data = dx_data;
      int width = dx->numel();
      int height = dout->numel() / width;
      if (dx->dims() == dout->dims()) {
        width = dy->numel();
        height = dout->numel() / width;
        out_data = dy_data;
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dx);
      } else {
        framework::TensorCopy(
            *dout, ctx.GetPlace(),
            ctx.template device_context<platform::DeviceContext>(), dy);
      }
352 353 354 355 356 357 358 359 360 361 362 363 364 365
      // special optimization using cub
      if (width == 1) {
        int nums = height;
        size_t temp_storage_bytes = 0;
        auto err = cub::DeviceReduce::Sum(nullptr, temp_storage_bytes,
                                          dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
        framework::Tensor tmp;
        auto *temp_storage = tmp.mutable_data<uint8_t>(
            framework::make_ddim({static_cast<int64_t>(temp_storage_bytes)}),
            ctx.GetPlace());
        err = cub::DeviceReduce::Sum(temp_storage, temp_storage_bytes,
                                     dout_data, out_data, nums, stream);
        PADDLE_ENFORCE_CUDA_SUCCESS(err);
W
wangchaochaohu 已提交
366
        return;
367
      }
368 369 370 371 372 373 374 375 376 377

      constexpr int block_x = 32;
      constexpr int block_y = 32;
      dim3 blocks(block_x, block_y);

      int max_physical_threads =
          ctx.cuda_device_context().GetMaxPhysicalThreadCount();
      int max_blocks = std::max(max_physical_threads / (block_x * block_y), 1);
      int theory_block = (width + blocks.x - 1) / blocks.x;
      dim3 grids(std::min(theory_block, max_blocks));
378
#if CUDA_VERSION >= 10000
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
      if (std::is_same<T, paddle::platform::float16>::value && width < 2048 &&
          width % 2 == 0 && height % 64 == 0) {
        auto &dev_ctx =
            ctx.template device_context<platform::CUDADeviceContext>();
        math::SetConstant<platform::CUDADeviceContext, T> functor;
        if (dout->dims() == dx->dims())
          functor(dev_ctx, dy, static_cast<T>(0));
        else
          functor(dev_ctx, dx, static_cast<T>(0));
        const __half2 *ptr1 = reinterpret_cast<const __half2 *>(dout_data);
        __half2 *ptr2 = reinterpret_cast<__half2 *>(out_data);
        const int threads = 128;
        dim3 grid(1, (height + 64 - 1) / 64);
        VecFP16MatrixColReduce<64><<<grid, threads, 0, stream>>>(ptr1, ptr2,
                                                                 width, height);
        return;
      }
396
#endif
397 398 399 400 401 402 403

      if (width / height < 32) {
        MatrixColReduce<T, block_x, block_y><<<grids, blocks, 0, stream>>>(
            dout_data, out_data, width, height);
      } else {
        size_t thread_nums = 1024;
        size_t block_nums = (width + thread_nums - 1) / thread_nums;
404
        int vec_size = VectorizedSize<T>(dout_data);
405 406 407 408 409 410 411 412 413 414
        if (vec_size == 4 && width % 4 == 0) {
          block_nums = (width / vec_size + thread_nums - 1) / thread_nums;
          VecMatrixReduceLongWidth<T,
                                   4><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        } else {
          MatrixReduceLongWidth<T><<<block_nums, thread_nums, 0, stream>>>(
              dout_data, out_data, width, height);
        }
      }
415 416 417 418 419
      return;
    }

#endif
#endif
420 421 422 423 424 425 426 427 428 429 430 431 432 433
    // Special case when dy is not needed and dx doesn't reduce
    if (dx != nullptr && dy == nullptr && dx->dims() == dout->dims()) {
      VLOG(4) << "Special case when dy is not needed and dx doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dx);
    } else if (dx == nullptr && dy != nullptr && dy->dims() == dout->dims()) {
      VLOG(4) << "Special case when dx is not needed and dy doesn't "
                 "reduce";
      framework::TensorCopy(
          *dout, ctx.GetPlace(),
          ctx.template device_context<platform::DeviceContext>(), dy);
    } else if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
434
      elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx, dy);
435
    } else {
436 437
      default_elementwise_add_grad<DeviceContext, T>(ctx, x, y, out, dout, dx,
                                                     dy);
438
    }
G
gongweibao 已提交
439 440 441
  }
};

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
template <typename DeviceContext, typename T>
class ElementwiseAddDoubleGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    using Tensor = framework::Tensor;

    auto *y = ctx.Input<Tensor>("Y");
    auto *dout = ctx.Input<Tensor>("DOut");
    auto *ddx = ctx.Input<Tensor>("DDX");
    auto *ddy = ctx.Input<Tensor>("DDY");

    auto *ddout = ctx.Output<Tensor>("DDOut");

    // ddOut = ddx + ddy
    if (ddout) {
      Tensor ddx_safe, ddy_safe;
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, dout, ddx, &ddx_safe);
      GetDoubleGradSafeTensor<DeviceContext, T>(ctx, y, ddy, &ddy_safe);

      ddout->mutable_data<T>(ctx.GetPlace());
462 463
      default_elementwise_add<DeviceContext, T>(ctx, &ddx_safe, &ddy_safe,
                                                ddout);
464 465 466 467
    }
  }
};

G
gongweibao 已提交
468 469
}  // namespace operators
}  // namespace paddle