test_hsigmoid_op.py 25.3 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
Y
Yancey1989 已提交
16
import unittest
17

Y
Yancey1989 已提交
18
import numpy as np
W
wanghuancoder 已提交
19
from eager_op_test import OpTest, skip_check_grad_ci
20

L
Leo Chen 已提交
21
import paddle
J
JiabinYang 已提交
22
import paddle.fluid as fluid
23
import paddle.nn.functional as F
Y
Yancey1989 已提交
24

25
paddle.enable_static()
D
dzhwinter 已提交
26 27
np.random.seed(100)

Y
Yancey1989 已提交
28 29 30 31 32

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


33
class CodeTable:
Y
Yancey1989 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


47
class CodeTableWithCustomTree:
48 49 50
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
51 52 53 54 55 56 57
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
58
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
59 60 61 62 63 64 65 66 67 68
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
69
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
70 71 72
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
73 74 75
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
76
    for i in range(batch_size):
W
weixing02 已提交
77
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
78
        length = code_table.get_length()
W
weixing02 已提交
79
        for j in range(length):
Y
Yancey1989 已提交
80
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
81
            pre_output[i][j] += bias[idx][0]
82 83
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
84
        length = code_table.get_length()
85 86 87
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
88
    # clip[-40.0, 40.0]
W
weixing02 已提交
89
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
90
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
91
    for i in range(batch_size):
W
weixing02 已提交
92
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
93 94
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
95
        for j in range(length):
Y
Yancey1989 已提交
96 97 98 99 100 101 102
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
103
    return pre_output, out
Y
Yancey1989 已提交
104 105


106 107
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
108 109 110
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


130 131 132
def hsigmoidWithCustomTree(
    x, w, path_table, path_code, label, bias, num_classes
):
133
    batch_size = x.shape[0]
134
    code_length = len(path_table[0])
135
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
136
    # init pre_out with shape [N, code_length]
137 138 139
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
140 141
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
142
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
143 144 145 146
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
147
    for i in range(batch_size):
148
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
149 150 151 152 153 154 155 156
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
157
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
158 159 160 161 162 163 164 165 166 167 168 169 170
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


171 172 173
def python_api(
    input,
    label,
174 175
    weight,
    bias=None,
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    path_table=None,
    path_code=None,
    num_classes=-1,
    is_sparse=False,
    remote_prefetch=False,
):
    return paddle.nn.functional.hsigmoid_loss(
        input,
        label,
        num_classes,
        weight,
        bias,
        path_table,
        path_code,
        is_sparse,
    )
192 193 194 195 196


python_out_sig = ["Out"]


J
JiabinYang 已提交
197 198 199
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
200 201
        self.python_api = python_api
        self.python_out_sig = python_out_sig
202 203 204
        num_classes = 101
        feature_size = 5
        batch_size = 20
205 206 207 208 209 210 211 212 213
        x = np.random.uniform(-1, 1, (batch_size, feature_size)).astype(
            'float64'
        )
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)).astype(
            'float64'
        )
        label = np.random.randint(0, num_classes, (batch_size, 1)).astype(
            'int64'
        )
214
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
215 216 217 218
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
219
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
220 221

    def test_check_output(self):
W
wanghuancoder 已提交
222
        self.check_output()
J
JiabinYang 已提交
223 224

    def test_check_grad(self):
225 226 227 228 229
        self.check_grad(
            ['X', 'W', 'Bias'],
            ['Out'],
            user_defined_grads=self.user_grads,
        )
J
JiabinYang 已提交
230 231


232
@skip_check_grad_ci(
233
    reason="For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
234
)
J
JiabinYang 已提交
235 236 237
class TestHSigmoidOpSparse(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
238 239
        self.python_api = python_api
        self.python_out_sig = python_out_sig
240
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
241 242
        feature_size = 8
        batch_size = 4
243 244
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
245
        label = np.array([0, 1, 4, 5]).astype('int64')
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
266
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
267 268 269 270
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
271
            'PathTable': path_table,
272
            'PathCode': path_code,
J
JiabinYang 已提交
273
            'Label': label,
274
            'Bias': bias,
J
JiabinYang 已提交
275
        }
276 277 278
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
279 280 281
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
W
wanghuancoder 已提交
282
        self.check_output()
J
JiabinYang 已提交
283 284 285 286


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
    def hs_net_conf(self, is_sparse):
G
GGBond8488 已提交
287 288 289
        input_word = paddle.static.data(name="x", shape=[-1, 1], dtype='int64')
        path_table = paddle.static.data(
            name='path_table', shape=[-1, 3], dtype='int64'
290
        )
G
GGBond8488 已提交
291 292
        path_code = paddle.static.data(
            name='path_code', shape=[-1, 3], dtype='int64'
293
        )
G
GGBond8488 已提交
294
        label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64')
J
JiabinYang 已提交
295

296
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
297 298 299

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
300
            is_sparse=is_sparse,
J
JiabinYang 已提交
301
            size=[3, 3],
302
            param_attr=fluid.ParamAttr(
303
                initializer=paddle.nn.initializer.Normal(std=1 / math.sqrt(3))
304 305 306
            ),
        )

307 308 309 310 311 312 313 314 315
        loss = paddle.nn.HSigmoidLoss(
            feature_size=emb.shape[1],
            num_classes=3,
            bias_attr=True,
            is_custom=True,
            is_sparse=is_sparse,
        )

        cost = loss(
316 317 318 319 320
            input=emb,
            label=label,
            path_table=path_table,
            path_code=path_code,
        )
J
JiabinYang 已提交
321

322
        avg_cost = paddle.mean(cost)
J
JiabinYang 已提交
323 324 325

        return avg_cost, data_list

J
JiabinYang 已提交
326 327
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
328
            paddle.seed(1)
J
JiabinYang 已提交
329 330
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
331 332 333
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
334 335 336 337 338 339 340 341 342 343 344

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
345
            result = []
J
JiabinYang 已提交
346
            for i in range(10):
347 348 349 350 351 352 353 354 355 356 357 358
                data = [
                    (
                        [[x[i % 2]]],
                        [list(path_table[i % 2])],
                        [list(path_code[i % 2])],
                        [label[i % 2]],
                    )
                ]

                loss_val = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[loss]
                )
J
JiabinYang 已提交
359 360 361 362 363 364
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
365
        assert dense_result == sparse_result
J
JiabinYang 已提交
366 367


368
@skip_check_grad_ci(
369
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
370
)
J
JiabinYang 已提交
371 372 373
class TestHSigmoidOpWithCostumTree(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
374 375
        self.python_api = python_api
        self.python_out_sig = python_out_sig
376
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
377 378
        feature_size = 8
        batch_size = 4
379 380
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
381
        label = np.array([0, 1, 4, 5]).astype('int64')
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
402
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
403 404 405 406
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
407
            'PathTable': path_table,
408
            'PathCode': path_code,
J
JiabinYang 已提交
409
            'Label': label,
410
            'Bias': bias,
J
JiabinYang 已提交
411
        }
412 413 414
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
415 416 417
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
W
wanghuancoder 已提交
418
        self.check_output()
J
JiabinYang 已提交
419 420

    def test_check_grad(self):
421 422 423 424 425
        self.check_grad(
            ['Bias', 'X', 'W'],
            ['Out'],
            no_grad_set=set('Label'),
        )
J
JiabinYang 已提交
426

Y
Yancey1989 已提交
427

428
@skip_check_grad_ci(
429
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
430
)
431 432 433
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
434 435
        self.python_api = python_api
        self.python_out_sig = python_out_sig
436
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
437 438
        feature_size = 8
        batch_size = 4
439 440
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
441
        label = np.array([0, 1, 4, 5]).astype('int64')
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
462 463 464 465 466
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
467
            'PathTable': path_table,
468
            'PathCode': path_code,
469 470
            'Label': label,
        }
471 472 473 474 475 476 477 478 479
        pre_output, out = hsigmoidWithCustomTree(
            x=x,
            w=w,
            path_table=path_table,
            path_code=path_code,
            label=label,
            bias=None,
            num_classes=num_classes,
        )
480 481 482
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
W
wanghuancoder 已提交
483
        self.check_output()
484 485

    def test_check_grad(self):
W
wanghuancoder 已提交
486
        self.check_grad(['X', 'W'], ['Out'], no_grad_set=set('Label'))
487 488


489 490 491 492 493 494 495 496 497 498 499 500 501
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
502 503 504 505 506
            -1, 1, [self.batch_size, self.feature_size]
        ).astype(self.dtype)
        self.labels_np = np.random.randint(
            self.num_classes, size=(self.batch_size, 1), dtype='int64'
        )
507
        self.weight_np = np.random.uniform(
508 509 510 511 512
            -1, 1, [self.num_classes - 1, self.feature_size]
        ).astype(self.dtype)
        self.bias_np = np.random.uniform(-1, 1, (self.num_classes - 1,)).astype(
            self.dtype
        )
513 514
        self.path_table_np = None
        self.path_code_np = None
515 516 517 518 519 520 521
        _, self.out_np = hsigmoid(
            self.x_np,
            self.weight_np,
            self.labels_np,
            self.bias_np,
            self.num_classes,
        )
522 523 524
        self.set_attrs()

        if self.is_custom:
525 526 527 528 529 530 531 532 533
            _, self.out_np = hsigmoidWithCustomTree(
                self.x_np,
                self.weight_np,
                self.path_table_np,
                self.path_code_np,
                self.labels_np,
                self.bias_np.reshape(-1, 1),
                self.num_classes,
            )
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
549 550 551
        out1 = F.hsigmoid_loss(
            x, labels, self.num_classes, weight, bias, path_table, path_code
        )
552

553 554
        weight_attr = paddle.nn.initializer.Assign(self.weight_np)
        bias_attr = paddle.nn.initializer.Assign(self.bias_np)
555 556 557 558 559 560 561
        m = paddle.nn.HSigmoidLoss(
            self.feature_size,
            self.num_classes,
            weight_attr,
            bias_attr,
            self.is_custom,
        )
562 563 564
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
565
            np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05)
566 567 568 569 570 571 572 573 574
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
575 576 577 578 579 580
            bias = paddle.static.data(
                'bias',
                [
                    -1,
                ],
            )
581 582 583 584 585
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
586 587 588
            out1 = F.hsigmoid_loss(
                x, labels, self.num_classes, weight, bias, path_table, path_code
            )
589 590

            weight_attr = paddle.framework.ParamAttr(
591
                initializer=paddle.nn.initializer.Assign(self.weight_np)
592
            )
593
            bias_attr = paddle.framework.ParamAttr(
594
                initializer=paddle.nn.initializer.Assign(self.bias_np)
595 596 597 598 599 600 601 602
            )
            m = paddle.nn.HSigmoidLoss(
                self.feature_size,
                self.num_classes,
                weight_attr,
                bias_attr,
                self.is_custom,
            )
603 604 605 606 607 608 609 610
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
611
                'bias': self.bias_np,
612 613 614 615
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
616 617 618
            ret1, ret2 = exe.run(
                train_program, feed=feed_dict, fetch_list=[out1, out2]
            )
619 620

            for ret in [ret1, ret2]:
621
                np.testing.assert_allclose(self.out_np, ret, rtol=1e-05)
622 623 624 625 626

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
627 628
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
629 630 631
            path_table = None
            path_code = None
            if self.is_custom:
632 633
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
634 635
            weight_attr = paddle.nn.initializer.Assign(self.weight_np)
            bias_attr = paddle.nn.initializer.Assign(self.bias_np)
636 637 638 639 640 641 642 643 644 645 646 647 648
            loss = paddle.nn.HSigmoidLoss(
                feature_size=x.shape[1],
                num_classes=self.num_classes,
                weight_attr=weight_attr,
                bias_attr=bias_attr,
                is_custom=self.is_custom,
                name='out',
            )
            out = loss(
                input=x,
                label=labels,
                path_table=path_table,
                path_code=path_code,
649
            )
650 651 652 653 654 655 656

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
657
            (ret,) = exe.run(train_program, feed=feed_dict, fetch_list=[out])
658

659
            np.testing.assert_allclose(ret, self.out_np, rtol=1e-05)
660

661
    def test_errors(self):
662 663 664
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
665 666 667 668 669 670 671 672 673 674
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
675 676 677
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x_int32, label, 8, weight
            )
678

679 680 681 682 683 684
            label_float32 = paddle.static.data(
                'label_float32', [4, 1], 'float32'
            )
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label_float32, 8, weight
            )
685 686

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
687 688 689
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight_int32
            )
690 691

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight, bias=bias_int32
            )

            path_table_int32 = paddle.static.data(
                'path_table_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_table=path_table_int32,
            )

            path_code_int32 = paddle.static.data(
                'path_code_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_code=path_code_int32,
            )
721

L
Linjie Chen 已提交
722 723 724 725 726 727 728 729 730 731 732
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
L
Linjie Chen 已提交
733 734 735 736 737
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 2, weight)

        x = paddle.to_tensor(np.reshape(x_arr, [1, 0, 0, 1]), dtype='float32')
        label = paddle.to_tensor(np.reshape(x_arr, [1, 1, 0]), dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
L
Linjie Chen 已提交
738 739 740
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

741

742 743 744
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
    def set_attrs(self):
        self.is_custom = True
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        self.path_table_np = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(np.int64)
        self.path_code_np = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(np.int64)
761 762 763 764 765

    def test_errors(self):
        pass


Y
Yancey1989 已提交
766 767
if __name__ == '__main__':
    unittest.main()