test_hsigmoid_op.py 25.4 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
Y
Yancey1989 已提交
16
import unittest
17

Y
Yancey1989 已提交
18
import numpy as np
19 20
from op_test import OpTest, skip_check_grad_ci

L
Leo Chen 已提交
21
import paddle
J
JiabinYang 已提交
22
import paddle.fluid as fluid
23
import paddle.nn.functional as F
Y
Yancey1989 已提交
24

25
paddle.enable_static()
D
dzhwinter 已提交
26 27
np.random.seed(100)

Y
Yancey1989 已提交
28 29 30 31 32

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


33
class CodeTable:
Y
Yancey1989 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


47
class CodeTableWithCustomTree:
48 49 50
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
51 52 53 54 55 56 57
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
58
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
59 60 61 62 63 64 65 66 67 68
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
69
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
70 71 72
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
73 74 75
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
76
    for i in range(batch_size):
W
weixing02 已提交
77
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
78
        length = code_table.get_length()
W
weixing02 已提交
79
        for j in range(length):
Y
Yancey1989 已提交
80
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
81
            pre_output[i][j] += bias[idx][0]
82 83
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
84
        length = code_table.get_length()
85 86 87
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
88
    # clip[-40.0, 40.0]
W
weixing02 已提交
89
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
90
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
91
    for i in range(batch_size):
W
weixing02 已提交
92
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
93 94
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
95
        for j in range(length):
Y
Yancey1989 已提交
96 97 98 99 100 101 102
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
103
    return pre_output, out
Y
Yancey1989 已提交
104 105


106 107
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
108 109 110
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


130 131 132
def hsigmoidWithCustomTree(
    x, w, path_table, path_code, label, bias, num_classes
):
133
    batch_size = x.shape[0]
134
    code_length = len(path_table[0])
135
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
136
    # init pre_out with shape [N, code_length]
137 138 139
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
140 141
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
142
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
143 144 145 146
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
147
    for i in range(batch_size):
148
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
149 150 151 152 153 154 155 156
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
157
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
158 159 160 161 162 163 164 165 166 167 168 169 170
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


171 172 173
def python_api(
    input,
    label,
174 175
    weight,
    bias=None,
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    path_table=None,
    path_code=None,
    num_classes=-1,
    is_sparse=False,
    remote_prefetch=False,
):
    return paddle.nn.functional.hsigmoid_loss(
        input,
        label,
        num_classes,
        weight,
        bias,
        path_table,
        path_code,
        is_sparse,
    )
192 193 194 195 196


python_out_sig = ["Out"]


J
JiabinYang 已提交
197 198 199
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
200 201
        self.python_api = python_api
        self.python_out_sig = python_out_sig
202 203 204
        num_classes = 101
        feature_size = 5
        batch_size = 20
205 206 207 208 209 210 211 212 213
        x = np.random.uniform(-1, 1, (batch_size, feature_size)).astype(
            'float64'
        )
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)).astype(
            'float64'
        )
        label = np.random.randint(0, num_classes, (batch_size, 1)).astype(
            'int64'
        )
214
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
215 216 217 218
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
219
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
220 221

    def test_check_output(self):
222
        self.check_output(check_eager=True)
J
JiabinYang 已提交
223 224

    def test_check_grad(self):
225 226 227 228 229 230
        self.check_grad(
            ['X', 'W', 'Bias'],
            ['Out'],
            user_defined_grads=self.user_grads,
            check_eager=True,
        )
J
JiabinYang 已提交
231 232


233
@skip_check_grad_ci(
234
    reason="For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
235
)
J
JiabinYang 已提交
236 237 238
class TestHSigmoidOpSparse(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
239 240
        self.python_api = python_api
        self.python_out_sig = python_out_sig
241
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
242 243
        feature_size = 8
        batch_size = 4
244 245
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
246
        label = np.array([0, 1, 4, 5]).astype('int64')
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
267
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
268 269 270 271
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
272
            'PathTable': path_table,
273
            'PathCode': path_code,
J
JiabinYang 已提交
274
            'Label': label,
275
            'Bias': bias,
J
JiabinYang 已提交
276
        }
277 278 279
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
280 281 282
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
283
        self.check_output(check_eager=True)
J
JiabinYang 已提交
284 285 286 287


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
    def hs_net_conf(self, is_sparse):
G
GGBond8488 已提交
288 289 290
        input_word = paddle.static.data(name="x", shape=[-1, 1], dtype='int64')
        path_table = paddle.static.data(
            name='path_table', shape=[-1, 3], dtype='int64'
291
        )
G
GGBond8488 已提交
292 293
        path_code = paddle.static.data(
            name='path_code', shape=[-1, 3], dtype='int64'
294
        )
G
GGBond8488 已提交
295
        label = paddle.static.data(name='label', shape=[-1, 1], dtype='int64')
J
JiabinYang 已提交
296

297
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
298 299 300

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
301
            is_sparse=is_sparse,
J
JiabinYang 已提交
302
            size=[3, 3],
303
            param_attr=fluid.ParamAttr(
304
                initializer=paddle.nn.initializer.Normal(std=1 / math.sqrt(3))
305 306 307
            ),
        )

308 309 310 311 312 313 314 315 316
        loss = paddle.nn.HSigmoidLoss(
            feature_size=emb.shape[1],
            num_classes=3,
            bias_attr=True,
            is_custom=True,
            is_sparse=is_sparse,
        )

        cost = loss(
317 318 319 320 321
            input=emb,
            label=label,
            path_table=path_table,
            path_code=path_code,
        )
J
JiabinYang 已提交
322

323
        avg_cost = paddle.mean(cost)
J
JiabinYang 已提交
324 325 326

        return avg_cost, data_list

J
JiabinYang 已提交
327 328
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
329
            paddle.seed(1)
J
JiabinYang 已提交
330 331
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
332 333 334
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
335 336 337 338 339 340 341 342 343 344 345 346

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
347
            for i in range(10):
348 349 350 351 352 353 354 355 356 357 358 359
                data = [
                    (
                        [[x[i % 2]]],
                        [list(path_table[i % 2])],
                        [list(path_code[i % 2])],
                        [label[i % 2]],
                    )
                ]

                loss_val = exe.run(
                    main_program, feed=feeder.feed(data), fetch_list=[loss]
                )
J
JiabinYang 已提交
360 361 362 363 364 365
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
366
        assert dense_result == sparse_result
J
JiabinYang 已提交
367 368


369
@skip_check_grad_ci(
370
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
371
)
J
JiabinYang 已提交
372 373 374
class TestHSigmoidOpWithCostumTree(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
375 376
        self.python_api = python_api
        self.python_out_sig = python_out_sig
377
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
J
JiabinYang 已提交
378 379
        feature_size = 8
        batch_size = 4
380 381
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
382
        label = np.array([0, 1, 4, 5]).astype('int64')
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
403
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
404 405 406 407
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
408
            'PathTable': path_table,
409
            'PathCode': path_code,
J
JiabinYang 已提交
410
            'Label': label,
411
            'Bias': bias,
J
JiabinYang 已提交
412
        }
413 414 415
        pre_output, out = hsigmoidWithCustomTree(
            x, w, path_table, path_code, label, bias, num_classes
        )
J
JiabinYang 已提交
416 417 418
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
419
        self.check_output(check_eager=True)
J
JiabinYang 已提交
420 421

    def test_check_grad(self):
422 423 424 425 426 427
        self.check_grad(
            ['Bias', 'X', 'W'],
            ['Out'],
            no_grad_set=set('Label'),
            check_eager=True,
        )
J
JiabinYang 已提交
428

Y
Yancey1989 已提交
429

430
@skip_check_grad_ci(
431
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
432
)
433 434 435
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
436 437
        self.python_api = python_api
        self.python_out_sig = python_out_sig
438
        num_classes = 6  # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
439 440
        feature_size = 8
        batch_size = 4
441 442
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
443
        label = np.array([0, 1, 4, 5]).astype('int64')
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
        path_table = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(
            'int64'
        )  # np.array to store
464 465 466 467 468
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
469
            'PathTable': path_table,
470
            'PathCode': path_code,
471 472
            'Label': label,
        }
473 474 475 476 477 478 479 480 481
        pre_output, out = hsigmoidWithCustomTree(
            x=x,
            w=w,
            path_table=path_table,
            path_code=path_code,
            label=label,
            bias=None,
            num_classes=num_classes,
        )
482 483 484
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
485
        self.check_output(check_eager=True)
486 487

    def test_check_grad(self):
488 489 490
        self.check_grad(
            ['X', 'W'], ['Out'], no_grad_set=set('Label'), check_eager=True
        )
491 492


493 494 495 496 497 498 499 500 501 502 503 504 505
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
506 507 508 509 510
            -1, 1, [self.batch_size, self.feature_size]
        ).astype(self.dtype)
        self.labels_np = np.random.randint(
            self.num_classes, size=(self.batch_size, 1), dtype='int64'
        )
511
        self.weight_np = np.random.uniform(
512 513 514 515 516
            -1, 1, [self.num_classes - 1, self.feature_size]
        ).astype(self.dtype)
        self.bias_np = np.random.uniform(-1, 1, (self.num_classes - 1,)).astype(
            self.dtype
        )
517 518
        self.path_table_np = None
        self.path_code_np = None
519 520 521 522 523 524 525
        _, self.out_np = hsigmoid(
            self.x_np,
            self.weight_np,
            self.labels_np,
            self.bias_np,
            self.num_classes,
        )
526 527 528
        self.set_attrs()

        if self.is_custom:
529 530 531 532 533 534 535 536 537
            _, self.out_np = hsigmoidWithCustomTree(
                self.x_np,
                self.weight_np,
                self.path_table_np,
                self.path_code_np,
                self.labels_np,
                self.bias_np.reshape(-1, 1),
                self.num_classes,
            )
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
553 554 555
        out1 = F.hsigmoid_loss(
            x, labels, self.num_classes, weight, bias, path_table, path_code
        )
556

557 558
        weight_attr = paddle.nn.initializer.Assign(self.weight_np)
        bias_attr = paddle.nn.initializer.Assign(self.bias_np)
559 560 561 562 563 564 565
        m = paddle.nn.HSigmoidLoss(
            self.feature_size,
            self.num_classes,
            weight_attr,
            bias_attr,
            self.is_custom,
        )
566 567 568
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
569
            np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05)
570 571 572 573 574 575 576 577 578
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
579 580 581 582 583 584
            bias = paddle.static.data(
                'bias',
                [
                    -1,
                ],
            )
585 586 587 588 589
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
590 591 592
            out1 = F.hsigmoid_loss(
                x, labels, self.num_classes, weight, bias, path_table, path_code
            )
593 594

            weight_attr = paddle.framework.ParamAttr(
595
                initializer=paddle.nn.initializer.Assign(self.weight_np)
596
            )
597
            bias_attr = paddle.framework.ParamAttr(
598
                initializer=paddle.nn.initializer.Assign(self.bias_np)
599 600 601 602 603 604 605 606
            )
            m = paddle.nn.HSigmoidLoss(
                self.feature_size,
                self.num_classes,
                weight_attr,
                bias_attr,
                self.is_custom,
            )
607 608 609 610 611 612 613 614
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
615
                'bias': self.bias_np,
616 617 618 619
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
620 621 622
            ret1, ret2 = exe.run(
                train_program, feed=feed_dict, fetch_list=[out1, out2]
            )
623 624

            for ret in [ret1, ret2]:
625
                np.testing.assert_allclose(self.out_np, ret, rtol=1e-05)
626 627 628 629 630 631 632 633 634 635 636 637

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
638 639
            weight_attr = paddle.nn.initializer.Assign(self.weight_np)
            bias_attr = paddle.nn.initializer.Assign(self.bias_np)
640 641 642 643 644 645 646 647 648 649 650 651 652
            loss = paddle.nn.HSigmoidLoss(
                feature_size=x.shape[1],
                num_classes=self.num_classes,
                weight_attr=weight_attr,
                bias_attr=bias_attr,
                is_custom=self.is_custom,
                name='out',
            )
            out = loss(
                input=x,
                label=labels,
                path_table=path_table,
                path_code=path_code,
653
            )
654 655 656 657 658 659 660

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
661
            (ret,) = exe.run(train_program, feed=feed_dict, fetch_list=[out])
662

663
            np.testing.assert_allclose(ret, self.out_np, rtol=1e-05)
664

665
    def test_errors(self):
666 667 668
        with paddle.static.program_guard(
            paddle.static.Program(), paddle.static.Program()
        ):
669 670 671 672 673 674 675 676 677 678
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
679 680 681
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x_int32, label, 8, weight
            )
682

683 684 685 686 687 688
            label_float32 = paddle.static.data(
                'label_float32', [4, 1], 'float32'
            )
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label_float32, 8, weight
            )
689 690

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
691 692 693
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight_int32
            )
694 695

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
            self.assertRaises(
                TypeError, F.hsigmoid_loss, x, label, 8, weight, bias=bias_int32
            )

            path_table_int32 = paddle.static.data(
                'path_table_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_table=path_table_int32,
            )

            path_code_int32 = paddle.static.data(
                'path_code_int32', [7], 'int32'
            )
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_code=path_code_int32,
            )
725

L
Linjie Chen 已提交
726 727 728 729 730 731 732 733 734 735 736
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
L
Linjie Chen 已提交
737 738 739 740 741
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 2, weight)

        x = paddle.to_tensor(np.reshape(x_arr, [1, 0, 0, 1]), dtype='float32')
        label = paddle.to_tensor(np.reshape(x_arr, [1, 1, 0]), dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
L
Linjie Chen 已提交
742 743 744
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

745

746 747 748
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
    def set_attrs(self):
        self.is_custom = True
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
        self.path_table_np = np.array(
            [
                (0, 2, -1, -1, -1),
                (0, 1, 3, -1, -1),
                (0, 1, 4, -1, -1),
                (0, 2, -1, -1, -1),
            ]
        ).astype(np.int64)
        self.path_code_np = np.array(
            [
                (0, 0, -1, -1, -1),
                (1, 1, 1, -1, -1),
                (1, 0, 0, -1, -1),
                (0, 1, -1, -1, -1),
            ]
        ).astype(np.int64)
765 766 767 768 769

    def test_errors(self):
        pass


Y
Yancey1989 已提交
770 771
if __name__ == '__main__':
    unittest.main()