test_hsigmoid_op.py 23.6 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yancey1989 已提交
17 18
import unittest
import numpy as np
L
Leo Chen 已提交
19
import paddle
J
JiabinYang 已提交
20 21
import paddle.fluid.core as core
import paddle.fluid as fluid
22
import paddle.nn.functional as F
23
from paddle.fluid import Program, program_guard
24
import paddle.fluid.initializer as I
Y
Yancey1989 已提交
25
import math
26
from op_test import OpTest, skip_check_grad_ci
Y
Yancey1989 已提交
27

28
paddle.enable_static()
D
dzhwinter 已提交
29 30
np.random.seed(100)

Y
Yancey1989 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


50
class CodeTableWithCustomTree(object):
51 52 53
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
54 55 56 57 58 59 60
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
61
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
62 63 64 65 66 67 68 69 70 71
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
72
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
73 74 75
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
76 77 78
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
79
    for i in range(batch_size):
W
weixing02 已提交
80
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
81
        length = code_table.get_length()
W
weixing02 已提交
82
        for j in range(length):
Y
Yancey1989 已提交
83
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
84
            pre_output[i][j] += bias[idx][0]
85 86
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
87
        length = code_table.get_length()
88 89 90
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
91
    # clip[-40.0, 40.0]
W
weixing02 已提交
92
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
93
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
94
    for i in range(batch_size):
W
weixing02 已提交
95
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
96 97
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
98
        for j in range(length):
Y
Yancey1989 已提交
99 100 101 102 103 104 105
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
106
    return pre_output, out
Y
Yancey1989 已提交
107 108


109 110
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
111 112 113
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


133 134
def hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias,
                           num_classes):
135
    batch_size = x.shape[0]
136
    code_length = len(path_table[0])
137
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
138
    # init pre_out with shape [N, code_length]
139 140 141
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
142 143
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
144
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
145 146 147 148
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
149
    for i in range(batch_size):
150
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
151 152 153 154 155 156 157 158
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
159
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
160 161 162 163 164 165 166 167 168 169 170 171 172
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


J
JiabinYang 已提交
173 174 175
class TestHSigmoidOp(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
176 177 178
        num_classes = 101
        feature_size = 5
        batch_size = 20
179 180 181 182 183 184 185
        x = np.random.uniform(-1, 1,
                              (batch_size, feature_size)).astype('float64')
        w = np.random.uniform(-1, 1,
                              (num_classes - 1, feature_size)).astype('float64')
        label = np.random.randint(0, num_classes,
                                  (batch_size, 1)).astype('int64')
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
186 187 188 189
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
190
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
191 192 193 194 195

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
196 197
        self.check_grad(
            ['X', 'W', 'Bias'], ['Out'], user_defined_grads=self.user_grads)
J
JiabinYang 已提交
198 199


200
@skip_check_grad_ci(
201
    reason="For 'TestHSigmoidOpSparse', check_grad is is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
202
)
J
JiabinYang 已提交
203 204 205 206 207 208
class TestHSigmoidOpSparse(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
209 210
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
211 212 213 214 215 216 217 218 219
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1,
                                                                       -1, -1)
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1),
             (0, 1, -1, -1, -1)]).astype('int64')  #np.array to store 
220
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
221 222 223 224
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
225
            'PathTable': path_table,
226
            'PathCode': path_code,
J
JiabinYang 已提交
227 228 229
            'Label': label,
            'Bias': bias
        }
230 231
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
232 233 234 235 236 237 238 239 240
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
        self.check_output()


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
241 242 243 244
        path_table = fluid.layers.data(
            name='path_table', shape=[3], dtype='int64')
        path_code = fluid.layers.data(
            name='path_code', shape=[3], dtype='int64')
J
JiabinYang 已提交
245
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
246

247
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
248 249 250

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
251
            is_sparse=is_sparse,
J
JiabinYang 已提交
252 253 254 255
            size=[3, 3],
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(3))))

J
JiabinYang 已提交
256 257
        cost = fluid.layers.hsigmoid(
            input=emb,
J
JiabinYang 已提交
258
            label=label,
259
            bias_attr=True,
260
            num_classes=3,
261 262 263
            path_table=path_table,
            path_code=path_code,
            is_custom=True,
J
JiabinYang 已提交
264
            is_sparse=is_sparse)
J
JiabinYang 已提交
265 266 267 268 269

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
270 271
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
272
            paddle.seed(1)
J
JiabinYang 已提交
273 274
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
275 276 277
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
278 279 280 281 282 283 284 285 286 287 288 289

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
290
            for i in range(10):
291 292
                data = [([[x[i % 2]]], [list(path_table[i % 2])],
                         [list(path_code[i % 2])], [label[i % 2]])]
J
JiabinYang 已提交
293

J
JiabinYang 已提交
294 295 296
                loss_val = exe.run(main_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[loss])
J
JiabinYang 已提交
297 298 299 300 301 302 303 304 305
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
        assert (dense_result == sparse_result)


306 307 308
@skip_check_grad_ci(
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
)
J
JiabinYang 已提交
309 310 311 312 313 314
class TestHSigmoidOpWithCostumTree(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
315 316
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
317 318 319 320 321 322 323 324 325
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1,
                                                                       -1, -1)
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1),
             (0, 1, -1, -1, -1)]).astype('int64')  #np.array to store 
326
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
327 328 329 330
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
331
            'PathTable': path_table,
332
            'PathCode': path_code,
J
JiabinYang 已提交
333 334 335
            'Label': label,
            'Bias': bias
        }
336 337
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
338 339 340 341 342 343 344 345
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))

Y
Yancey1989 已提交
346

347 348 349
@skip_check_grad_ci(
    reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
)
350 351 352 353 354 355
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
356 357
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
358 359 360 361 362 363 364 365 366
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1,
                                                                       -1, -1)
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
        path_code = np.array(
            [(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1),
             (0, 1, -1, -1, -1)]).astype('int64')  #np.array to store 
367 368 369 370 371
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
372
            'PathTable': path_table,
373
            'PathCode': path_code,
374 375 376 377 378
            'Label': label,
        }
        pre_output, out = hsigmoidWithCustomTree(
            x=x,
            w=w,
379 380
            path_table=path_table,
            path_code=path_code,
381 382 383 384 385 386 387 388 389 390 391 392
            label=label,
            bias=None,
            num_classes=num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'W'], ['Out'], no_grad_set=set('Label'))


393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
            -1, 1, [self.batch_size, self.feature_size]).astype(self.dtype)
        self.labels_np = np.random.randint(
            self.num_classes, size=(self.batch_size, 1), dtype='int64')
        self.weight_np = np.random.uniform(
            -1, 1, [self.num_classes - 1, self.feature_size]).astype(self.dtype)
        self.bias_np = np.random.uniform(-1, 1, (
            self.num_classes - 1, )).astype(self.dtype)
        self.path_table_np = None
        self.path_code_np = None
        _, self.out_np = hsigmoid(self.x_np, self.weight_np, self.labels_np,
                                  self.bias_np, self.num_classes)
        self.set_attrs()

        if self.is_custom:
            _, self.out_np = hsigmoidWithCustomTree(
                self.x_np, self.weight_np, self.path_table_np,
                self.path_code_np, self.labels_np,
                self.bias_np.reshape(-1, 1), self.num_classes)

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
        out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                               path_table, path_code)

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
        m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                   weight_attr, bias_attr, self.is_custom)
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
            self.assertTrue(np.allclose(self.out_np, out.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
            bias = paddle.static.data('bias', [-1, ])
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
            out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                                   path_table, path_code)

            weight_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.weight_np))
            bias_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.bias_np))
            m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                       weight_attr, bias_attr, self.is_custom)
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
                'bias': self.bias_np
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret1, ret2 = exe.run(train_program,
                                 feed=feed_dict,
                                 fetch_list=[out1, out2])

            for ret in [ret1, ret2]:
                self.assertTrue(np.allclose(self.out_np, ret))

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
            out = fluid.layers.hsigmoid(x, labels, self.num_classes,
                                        weight_attr, bias_attr, 'out',
                                        path_table, path_code, self.is_custom)

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret, = exe.run(train_program, feed=feed_dict, fetch_list=[out])

            self.assertTrue(np.allclose(ret, self.out_np))

521
    def test_errors(self):
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x_int32, label, 8,
                              weight)

            label_float32 = paddle.static.data('label_float32', [4, 1],
                                               'float32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label_float32, 8,
                              weight)

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label, 8,
                              weight_int32)

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                bias=bias_int32)

            path_table_int32 = paddle.static.data('path_table_int32', [7],
                                                  'int32')
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_table=path_table_int32)

            path_code_int32 = paddle.static.data('path_code_int32', [7],
                                                 'int32')
            self.assertRaises(
                TypeError,
                F.hsigmoid_loss,
                x,
                label,
                8,
                weight,
                path_code=path_code_int32)

        # test paddle.fluid.layers.hsigmoid
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
        with program_guard(Program()):
            label = fluid.data('label', [4, 1], 'int64')
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, 1, label, 2)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[4, 3], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_int32, label,
                              2)
            # support the input dtype is float32
            x_fp32 = fluid.data(name='x_fp32', shape=[4, 3], dtype='float32')
            fluid.layers.hsigmoid(x_fp32, label, 2)

            # The label type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32, 1, 2)
            # The label dtype must be int64.
            label_int32 = fluid.data('label_int32', [4, 1], 'int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32,
                              label_int32, 2)


599 600 601 602 603 604 605 606 607 608 609 610
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
    def set_attrs(self):
        self.is_custom = True
        self.path_table_np = np.array([(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (
            0, 1, 4, -1, -1), (0, 2, -1, -1, -1)]).astype(np.int64)
        self.path_code_np = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
            1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]).astype(np.int64)

    def test_errors(self):
        pass


Y
Yancey1989 已提交
611 612
if __name__ == '__main__':
    unittest.main()