test_hsigmoid_op.py 25.3 KB
Newer Older
W
weixing02 已提交
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
W
weixing02 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yancey1989 已提交
17 18
import unittest
import numpy as np
L
Leo Chen 已提交
19
import paddle
J
JiabinYang 已提交
20 21
import paddle.fluid.core as core
import paddle.fluid as fluid
22
import paddle.nn.functional as F
23
from paddle.fluid import Program, program_guard
24
import paddle.fluid.initializer as I
Y
Yancey1989 已提交
25
import math
26
from op_test import OpTest, skip_check_grad_ci
Y
Yancey1989 已提交
27

28
paddle.enable_static()
D
dzhwinter 已提交
29 30
np.random.seed(100)

Y
Yancey1989 已提交
31 32 33 34 35 36

def find_latest_set(num):
    return 1 + int(math.floor(math.log(num, 2)))


class CodeTable(object):
37

Y
Yancey1989 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
    def __init__(self, num_classes, code):
        self.c = num_classes + code

    def cal_index(self, bit):
        return (self.c >> (bit + 1)) - 1

    def get_length(self):
        return find_latest_set(self.c) - 1

    def cal_bit(self, bit):
        return self.c & (1 << bit)


51
class CodeTableWithCustomTree(object):
52

53 54 55
    def __init__(self, path_table, path_code, index):
        self.ptable_ = path_table
        self.pcode_ = path_code
56 57 58 59 60 61 62
        self.index_ = index

    def cal_index(self, bit):
        return self.ptable_[self.index_][bit]

    def get_length(self):
        length = 0
J
JiabinYang 已提交
63
        for ele in self.ptable_[self.index_]:  # find the first -1 to stop trace
64 65 66 67 68 69 70 71 72 73
            if ele >= 0:
                length = length + 1
            else:
                return length
        return length

    def cal_bit(self, bit):
        return self.pcode_[self.index_][bit]


W
weixing02 已提交
74
def hsigmoid(x, w, label, bias, num_classes):
Y
Yancey1989 已提交
75 76 77
    batch_size = x.shape[0]
    code_length = find_latest_set(num_classes - 1)
    code_table = [0 for _ in range(code_length)]
78 79 80
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
W
weixing02 已提交
81
    for i in range(batch_size):
W
weixing02 已提交
82
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
83
        length = code_table.get_length()
W
weixing02 已提交
84
        for j in range(length):
Y
Yancey1989 已提交
85
            idx = code_table.cal_index(j)
J
JiabinYang 已提交
86
            pre_output[i][j] += bias[idx][0]
87 88
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
W
weixing02 已提交
89
        length = code_table.get_length()
90 91 92
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
Y
Yancey1989 已提交
93
    # clip[-40.0, 40.0]
W
weixing02 已提交
94
    pre_output = np.clip(pre_output, -40.0, 40.0)
Y
Yancey1989 已提交
95
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
W
weixing02 已提交
96
    for i in range(batch_size):
W
weixing02 已提交
97
        code_table = CodeTable(num_classes, label[i])
Y
Yancey1989 已提交
98 99
        length = code_table.get_length()
        sum = 0.0
W
weixing02 已提交
100
        for j in range(length):
Y
Yancey1989 已提交
101 102 103 104 105 106 107
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
108
    return pre_output, out
Y
Yancey1989 已提交
109 110


111 112
def hsigmoid_grad(x, w, label, bias, num_classes):
    batch_size = x.shape[0]
113 114 115
    dx = np.zeros(x.shape).astype('float64')
    dw = np.zeros(w.shape).astype('float64')
    db = np.zeros(bias.shape).astype('float64')
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    for i in range(batch_size):
        code_table = CodeTable(num_classes, label[i])
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx])))
            dx[i] = dx[i] + t * w[idx]
            dw[idx] += t * x[i]
            db[idx] += t
            if code_table.cal_bit(j):
                dx[i] = dx[i] - w[idx]
                dw[idx] -= x[i]
                db[idx] -= 1
    dx /= batch_size
    dw /= batch_size
    db /= batch_size
    return [dx, dw, db]


135 136
def hsigmoidWithCustomTree(x, w, path_table, path_code, label, bias,
                           num_classes):
137
    batch_size = x.shape[0]
138
    code_length = len(path_table[0])
139
    code_table = [0 for _ in range(code_length)]
J
JiabinYang 已提交
140
    # init pre_out with shape [N, code_length]
141 142 143
    pre_output = np.zeros((batch_size, code_length)).astype('float64')
    pre_sum = np.zeros((batch_size, 1)).astype('float64')
    out = np.zeros((batch_size, 1)).astype('float64')
144 145
    if isinstance(bias, np.ndarray):
        for i in range(batch_size):
146
            code_table = CodeTableWithCustomTree(path_table, path_code, i)
147 148 149 150
            length = code_table.get_length()
            for j in range(length):
                idx = code_table.cal_index(j)
                pre_output[i][j] += bias[idx][0]
151
    for i in range(batch_size):
152
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
153 154 155 156 157 158 159 160
        length = code_table.get_length()
        for j in range(length):
            idx = code_table.cal_index(j)
            pre_output[i][j] += np.dot(w[idx], x[i])
    # clip[-40.0, 40.0]
    pre_output = np.clip(pre_output, -40.0, 40.0)
    # out(i, 0) = \sum_j  bit(i, j) * preout(i, j)
    for i in range(batch_size):
161
        code_table = CodeTableWithCustomTree(path_table, path_code, i)
162 163 164 165 166 167 168 169 170 171 172 173 174
        length = code_table.get_length()
        sum = 0.0
        for j in range(length):
            if code_table.cal_bit(j):
                sum += pre_output[i][j]
        out[i] = -1.0 * sum
    # soft relu
    pre_output = np.log(1 + np.exp(pre_output))
    pre_sum = pre_output.sum(1).reshape((batch_size, 1))
    out += pre_sum
    return pre_output, out


J
JiabinYang 已提交
175
class TestHSigmoidOp(OpTest):
176

J
JiabinYang 已提交
177 178
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
179 180 181
        num_classes = 101
        feature_size = 5
        batch_size = 20
182 183 184 185 186 187 188
        x = np.random.uniform(-1, 1,
                              (batch_size, feature_size)).astype('float64')
        w = np.random.uniform(-1, 1,
                              (num_classes - 1, feature_size)).astype('float64')
        label = np.random.randint(0, num_classes,
                                  (batch_size, 1)).astype('int64')
        bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64')
J
JiabinYang 已提交
189 190 191 192
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias}
        pre_output, out = hsigmoid(x, w, label, bias, num_classes)
        self.outputs = {'PreOut': pre_output, 'Out': out}
193
        self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes)
J
JiabinYang 已提交
194 195 196 197 198

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
199 200
        self.check_grad(['X', 'W', 'Bias'], ['Out'],
                        user_defined_grads=self.user_grads)
J
JiabinYang 已提交
201 202


203
@skip_check_grad_ci(
204 205
    reason=
    "For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'."
206
)
J
JiabinYang 已提交
207
class TestHSigmoidOpSparse(OpTest):
208

J
JiabinYang 已提交
209 210 211 212 213
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
214 215
        x = np.random.random((batch_size, feature_size))
        w = np.random.random((num_classes - 1, feature_size))
216 217
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
218 219
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
220 221
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
222 223 224
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
225
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
226 227 228 229
        self.attrs = {'num_classes': num_classes, 'is_sparse': True}
        self.inputs = {
            'X': x,
            'W': w,
230
            'PathTable': path_table,
231
            'PathCode': path_code,
J
JiabinYang 已提交
232 233 234
            'Label': label,
            'Bias': bias
        }
235 236
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
237 238 239 240 241 242 243
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
        self.check_output()


class TestHSigmoidOpWithSparseGrad(unittest.TestCase):
244

J
JiabinYang 已提交
245 246
    def hs_net_conf(self, is_sparse):
        input_word = fluid.layers.data(name="x", shape=[1], dtype='int64')
247 248 249 250 251 252
        path_table = fluid.layers.data(name='path_table',
                                       shape=[3],
                                       dtype='int64')
        path_code = fluid.layers.data(name='path_code',
                                      shape=[3],
                                      dtype='int64')
J
JiabinYang 已提交
253
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
J
JiabinYang 已提交
254

255
        data_list = [input_word, path_table, path_code, label]
J
JiabinYang 已提交
256 257 258

        emb = fluid.layers.embedding(
            input=input_word,
J
JiabinYang 已提交
259
            is_sparse=is_sparse,
J
JiabinYang 已提交
260 261 262 263
            size=[3, 3],
            param_attr=fluid.ParamAttr(initializer=fluid.initializer.Normal(
                scale=1 / math.sqrt(3))))

264 265 266 267 268 269 270 271
        cost = fluid.layers.hsigmoid(input=emb,
                                     label=label,
                                     bias_attr=True,
                                     num_classes=3,
                                     path_table=path_table,
                                     path_code=path_code,
                                     is_custom=True,
                                     is_sparse=is_sparse)
J
JiabinYang 已提交
272 273 274 275 276

        avg_cost = fluid.layers.reduce_mean(cost)

        return avg_cost, data_list

J
JiabinYang 已提交
277 278
    def training_test(self, is_sparse):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
C
cnn 已提交
279
            paddle.seed(1)
J
JiabinYang 已提交
280 281
            start_up = fluid.default_startup_program()
            x = np.arange(6).reshape(6)
282 283 284
            path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64')
            path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64')
            label = np.array([1, 4]).astype('int64')
J
JiabinYang 已提交
285 286 287 288 289 290 291 292 293 294 295 296

            loss, data_list = self.hs_net_conf(is_sparse)
            optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
            optimizer.minimize(loss)

            main_program = fluid.default_main_program()
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(feed_list=data_list, place=place)
            exe = fluid.Executor(place)

            exe.run(start_up)
            result = list()
J
JiabinYang 已提交
297
            for i in range(10):
298 299
                data = [([[x[i % 2]]], [list(path_table[i % 2])],
                         [list(path_code[i % 2])], [label[i % 2]])]
J
JiabinYang 已提交
300

J
JiabinYang 已提交
301 302 303
                loss_val = exe.run(main_program,
                                   feed=feeder.feed(data),
                                   fetch_list=[loss])
J
JiabinYang 已提交
304 305 306 307 308 309 310 311 312
                result.append(loss_val)
        return result

    def test_hs_grad_with_sparse(self):
        dense_result = self.training_test(is_sparse=False)
        sparse_result = self.training_test(is_sparse=True)
        assert (dense_result == sparse_result)


313
@skip_check_grad_ci(
314 315
    reason=
    "[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
316
)
J
JiabinYang 已提交
317
class TestHSigmoidOpWithCostumTree(OpTest):
318

J
JiabinYang 已提交
319 320 321 322 323
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
324 325
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
326 327
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
328 329
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
330 331
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
332 333 334
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
335
        bias = np.random.random((num_classes - 1, 1))
J
JiabinYang 已提交
336 337 338 339
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
340
            'PathTable': path_table,
341
            'PathCode': path_code,
J
JiabinYang 已提交
342 343 344
            'Label': label,
            'Bias': bias
        }
345 346
        pre_output, out = hsigmoidWithCustomTree(x, w, path_table, path_code,
                                                 label, bias, num_classes)
J
JiabinYang 已提交
347 348 349 350 351 352 353 354
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'))

Y
Yancey1989 已提交
355

356
@skip_check_grad_ci(
357 358
    reason=
    "[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape."
359
)
360
class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest):
361

362 363 364 365 366
    def setUp(self):
        self.op_type = "hierarchical_sigmoid"
        num_classes = 6  #using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample
        feature_size = 8
        batch_size = 4
367 368
        x = np.random.uniform(-1, 1, (batch_size, feature_size))
        w = np.random.uniform(-1, 1, (num_classes - 1, feature_size))
369 370
        label = np.array([0, 1, 4, 5]).astype('int64')
        path_table = np.array([
371 372
            (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1),
            (0, 2, -1, -1, -1)
373 374
        ]).astype(
            'int64')  #np.array to store 1,2,5,6s' non-leaf path(root -> leaf)
375 376 377
        path_code = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                              (1, 0, 0, -1, -1), (0, 1, -1, -1, -1)
                              ]).astype('int64')  #np.array to store
378 379 380 381 382
        # bias = np.random.random((num_classes - 1, 1)).astype("float32")
        self.attrs = {'num_classes': num_classes, 'is_sparse': False}
        self.inputs = {
            'X': x,
            'W': w,
383
            'PathTable': path_table,
384
            'PathCode': path_code,
385 386
            'Label': label,
        }
387 388 389 390 391 392 393
        pre_output, out = hsigmoidWithCustomTree(x=x,
                                                 w=w,
                                                 path_table=path_table,
                                                 path_code=path_code,
                                                 label=label,
                                                 bias=None,
                                                 num_classes=num_classes)
394 395 396 397 398 399 400 401 402
        self.outputs = {'PreOut': pre_output, 'Out': out}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X', 'W'], ['Out'], no_grad_set=set('Label'))


403 404 405 406 407 408 409 410 411 412 413 414 415 416
class TestHSigmoidLossAPI(unittest.TestCase):
    # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss
    def setUp(self):
        self.dtype = 'float32'
        self.batch_size = 4
        self.feature_size = 6
        self.num_classes = 8
        self.is_custom = False
        self.place = paddle.CPUPlace()

        paddle.set_default_dtype(self.dtype)

        self.x_np = np.random.uniform(
            -1, 1, [self.batch_size, self.feature_size]).astype(self.dtype)
417 418 419
        self.labels_np = np.random.randint(self.num_classes,
                                           size=(self.batch_size, 1),
                                           dtype='int64')
420 421
        self.weight_np = np.random.uniform(
            -1, 1, [self.num_classes - 1, self.feature_size]).astype(self.dtype)
422 423
        self.bias_np = np.random.uniform(
            -1, 1, (self.num_classes - 1, )).astype(self.dtype)
424 425 426 427 428 429 430
        self.path_table_np = None
        self.path_code_np = None
        _, self.out_np = hsigmoid(self.x_np, self.weight_np, self.labels_np,
                                  self.bias_np, self.num_classes)
        self.set_attrs()

        if self.is_custom:
431 432 433 434 435 436
            _, self.out_np = hsigmoidWithCustomTree(self.x_np, self.weight_np,
                                                    self.path_table_np,
                                                    self.path_code_np,
                                                    self.labels_np,
                                                    self.bias_np.reshape(-1, 1),
                                                    self.num_classes)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471

    def set_attrs(self):
        pass

    def test_dygraph_api(self):
        paddle.disable_static(self.place)
        x = paddle.to_tensor(self.x_np)
        labels = paddle.to_tensor(self.labels_np)
        weight = paddle.to_tensor(self.weight_np)
        bias = paddle.to_tensor(self.bias_np)
        path_table = None
        path_code = None
        if self.is_custom:
            path_table = paddle.to_tensor(self.path_table_np)
            path_code = paddle.to_tensor(self.path_code_np)
        out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                               path_table, path_code)

        weight_attr = I.NumpyArrayInitializer(self.weight_np)
        bias_attr = I.NumpyArrayInitializer(self.bias_np)
        m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                   weight_attr, bias_attr, self.is_custom)
        out2 = m(x, labels, path_table, path_code)

        for out in [out1, out2]:
            self.assertTrue(np.allclose(self.out_np, out.numpy()))
        paddle.enable_static()

    def test_static_api(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        with paddle.static.program_guard(train_program, startup_program):
            x = paddle.static.data('x', [-1, self.feature_size])
            labels = paddle.static.data('labels', [-1, 1], 'int64')
            weight = paddle.static.data('weight', [-1, self.feature_size])
472 473 474
            bias = paddle.static.data('bias', [
                -1,
            ])
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = paddle.static.data('path_table', [-1, -1], 'int64')
                path_code = paddle.static.data('path_code', [-1, -1], 'int64')
            out1 = F.hsigmoid_loss(x, labels, self.num_classes, weight, bias,
                                   path_table, path_code)

            weight_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.weight_np))
            bias_attr = paddle.framework.ParamAttr(
                initializer=I.NumpyArrayInitializer(self.bias_np))
            m = paddle.nn.HSigmoidLoss(self.feature_size, self.num_classes,
                                       weight_attr, bias_attr, self.is_custom)
            out2 = m(x, labels, path_table, path_code)

            exe = paddle.static.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {
                'x': self.x_np,
                'labels': self.labels_np,
                'weight': self.weight_np,
                'bias': self.bias_np
            }
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret1, ret2 = exe.run(train_program,
                                 feed=feed_dict,
                                 fetch_list=[out1, out2])

            for ret in [ret1, ret2]:
                self.assertTrue(np.allclose(self.out_np, ret))

    def test_fluid_api(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            x = fluid.data('x', [-1, self.feature_size])
            labels = fluid.data('labels', [-1, 1], 'int64')
            path_table = None
            path_code = None
            if self.is_custom:
                path_table = fluid.data('path_table', [-1, -1], 'int64')
                path_code = fluid.data('path_code', [-1, -1], 'int64')
            weight_attr = I.NumpyArrayInitializer(self.weight_np)
            bias_attr = I.NumpyArrayInitializer(self.bias_np)
            out = fluid.layers.hsigmoid(x, labels, self.num_classes,
                                        weight_attr, bias_attr, 'out',
                                        path_table, path_code, self.is_custom)

            exe = fluid.Executor(self.place)
            exe.run(startup_program)
            feed_dict = {'x': self.x_np, 'labels': self.labels_np}
            if self.is_custom:
                feed_dict["path_code"] = self.path_code_np
                feed_dict["path_table"] = self.path_table_np
            ret, = exe.run(train_program, feed=feed_dict, fetch_list=[out])

            self.assertTrue(np.allclose(ret, self.out_np))

536
    def test_errors(self):
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            # test paddle.nn.HSigmoidLoss
            self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1)

            # test paddle.nn.functional.hsigmoid_loss
            x = paddle.static.data('x', [4, 6])
            label = paddle.static.data('label', [4, 1], 'int64')
            weight = paddle.static.data('weight', [7, 6])
            bias = paddle.static.data('bias', [7])

            x_int32 = paddle.static.data('x_int32', [4, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x_int32, label, 8,
                              weight)

            label_float32 = paddle.static.data('label_float32', [4, 1],
                                               'float32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label_float32, 8,
                              weight)

            weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32')
            self.assertRaises(TypeError, F.hsigmoid_loss, x, label, 8,
                              weight_int32)

            bias_int32 = paddle.static.data('bias_int32', [7], 'int32')
562 563 564 565 566 567 568
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              bias=bias_int32)
569 570 571

            path_table_int32 = paddle.static.data('path_table_int32', [7],
                                                  'int32')
572 573 574 575 576 577 578
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              path_table=path_table_int32)
579 580 581

            path_code_int32 = paddle.static.data('path_code_int32', [7],
                                                 'int32')
582 583 584 585 586 587 588
            self.assertRaises(TypeError,
                              F.hsigmoid_loss,
                              x,
                              label,
                              8,
                              weight,
                              path_code=path_code_int32)
589

L
Linjie Chen 已提交
590 591 592 593 594 595 596 597 598 599 600 601 602 603
        # test paddle.nn.HSigmoidLoss
        paddle.disable_static(self.place)
        x_arr = np.array([], dtype=np.float32)
        x = paddle.to_tensor(np.reshape(x_arr, (100000, 0)))
        label = paddle.to_tensor(0, dtype='int64')
        self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label)

        # test paddle.nn.functional.hsigmoid_loss
        x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32')
        label = paddle.to_tensor([], dtype='int64')
        weight = paddle.to_tensor([], dtype='float32')
        self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight)
        paddle.enable_static()

604
        # test paddle.fluid.layers.hsigmoid
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        with program_guard(Program()):
            label = fluid.data('label', [4, 1], 'int64')
            # The input type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, 1, label, 2)
            # The input dtype must be float16, float32, float64.
            x_int32 = fluid.data(name='x_int32', shape=[4, 3], dtype='int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_int32, label,
                              2)
            # support the input dtype is float32
            x_fp32 = fluid.data(name='x_fp32', shape=[4, 3], dtype='float32')
            fluid.layers.hsigmoid(x_fp32, label, 2)

            # The label type must be Variable.
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32, 1, 2)
            # The label dtype must be int64.
            label_int32 = fluid.data('label_int32', [4, 1], 'int32')
            self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32,
                              label_int32, 2)


625
class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI):
626

627 628
    def set_attrs(self):
        self.is_custom = True
629 630 631 632 633 634
        self.path_table_np = np.array([(0, 2, -1, -1, -1), (0, 1, 3, -1, -1),
                                       (0, 1, 4, -1, -1),
                                       (0, 2, -1, -1, -1)]).astype(np.int64)
        self.path_code_np = np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1),
                                      (1, 0, 0, -1, -1),
                                      (0, 1, -1, -1, -1)]).astype(np.int64)
635 636 637 638 639

    def test_errors(self):
        pass


Y
Yancey1989 已提交
640 641
if __name__ == '__main__':
    unittest.main()